首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关.
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关.
admin
2016-01-11
58
问题
设A=(α
1
,α
2
,α
3
)是5×3矩阵β
1
,β
2
是齐次线性方程组A
T
x=0的基础解系,试证α
1
,α
2
,α
3
,β
1
,β
2
线性无关.
选项
答案
因β
1
,β
2
是齐次线性方程组A
T
x=0的基础解系,所以有5-r(A
T
)=2,即r(A)=3,故α
1
,α
2
,α
3
线性无关.又 [*] 有 α
j
T
β
i
=0(i=1,2,j=1,2,3).设 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
β
1
+k
5
β
2
=0,令 γ=k
1
α
1
+k
2
α
2
+k
3
α
3
=一k
4
β
1
+k
5
β
2
,则 (k
1
α
1
+k
2
α
2
+k
3
α
3
,-k
4
β
1
-k
5
β
2
)=(γ,γ)=0.因而k
1
α
1
+k
2
α
2
+k
3
α
3
=0,一k
4
β
1
-k
5
β
2
=0,而α
1
,α
2
,α
3
及β
1
β
2
是线性无关的,故k
1
=k
2
=k
3
=0,k
4
=k
5
=0,从而α
1
,α
2
,α
3
,β
1
β
2
线性无关.
解析
本题是向量与方程组的综合题.注意齐次线性方程组的基础解系是线性无关的.
转载请注明原文地址:https://kaotiyun.com/show/Ui34777K
0
考研数学二
相关试题推荐
设A=,则与A既相似又合同的矩阵为()
设A=,b=,方程组Ax=b有无穷多解.(Ⅰ)求a的值及Ax=b的通解;(Ⅱ)求一个正交变换x=Qy,化二次型f(x1,x2,x3)=xTAx为标准形.(Ⅲ)求一个可逆线性变换将(Ⅱ)中的f(x1,x2,x3)化为规范形.
设曲线Y=a与y=㏑(x>0)在点(x0,y0)处有公切线.求两曲线与x轴所围图形绕x轴旋转一周所得旋转体的体积V.
设A是3阶方阵,λ1=1,λ2=-2,λ3=-1为A的特征值,对应的特征向量依次为a1,a2,a3,P=(3a2,2a3,-a1),则P-1(A*+E)P=()
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Ox轴旋转一周所产生的两个旋转体的体积之比;
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵P-1AP属于特征值λ的特征向量是().
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
随机试题
老年患者,大便艰涩,排出困难,四肢不温,腹中冷痛,腰膝酸冷,舌淡苔白,脉沉迟。其治疗宜选
关于早产儿的喂养,下述哪项是错误的
A.自牙颈部牙骨质向牙冠方向散开,止于游离龈和附着龈固有层的牙龈纤维B.自牙槽嵴向牙冠方向展开,穿过固有层止于游离龈和附着龈固有层的牙龈纤维C.位于牙颈周围的游离龈中,呈环行排列的牙龈纤维D.自牙颈部的牙骨质,越过牙槽突外侧皮质骨骨膜,进入牙槽突、前
如图所示,桁架结构中只作用悬挂重块的重力W,此桁架中杆件内力为零的杆数为:
原始凭证金额出现错误的,应当由开具单位更正,并在更正处加盖出具凭证单位的印章。 ( )
与单一法人客户相比,()不是集团法人客户的信用风险具有的特征。
甲为一有限责任公司的小股东,不参与公司经营管理。根据公司法律制度的规定,下列文件中,甲有权查阅和复制的有()。(2009年)
上海中心大厦楼高()米,外观为正方形柱体。
丽丽因为自己常常遭受来自丈夫的家暴而找到社会工作者。社会工作者根据()迹象认为丽丽已经具有“受虐妇女综合征”的特质。
Becauseofthecomingheavyrain,theracingcompetitionofyourcollegecan’tbeheldattheopen-airplayground.Writeanotic
最新回复
(
0
)