首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关.
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关.
admin
2016-01-11
87
问题
设A=(α
1
,α
2
,α
3
)是5×3矩阵β
1
,β
2
是齐次线性方程组A
T
x=0的基础解系,试证α
1
,α
2
,α
3
,β
1
,β
2
线性无关.
选项
答案
因β
1
,β
2
是齐次线性方程组A
T
x=0的基础解系,所以有5-r(A
T
)=2,即r(A)=3,故α
1
,α
2
,α
3
线性无关.又 [*] 有 α
j
T
β
i
=0(i=1,2,j=1,2,3).设 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
β
1
+k
5
β
2
=0,令 γ=k
1
α
1
+k
2
α
2
+k
3
α
3
=一k
4
β
1
+k
5
β
2
,则 (k
1
α
1
+k
2
α
2
+k
3
α
3
,-k
4
β
1
-k
5
β
2
)=(γ,γ)=0.因而k
1
α
1
+k
2
α
2
+k
3
α
3
=0,一k
4
β
1
-k
5
β
2
=0,而α
1
,α
2
,α
3
及β
1
β
2
是线性无关的,故k
1
=k
2
=k
3
=0,k
4
=k
5
=0,从而α
1
,α
2
,α
3
,β
1
β
2
线性无关.
解析
本题是向量与方程组的综合题.注意齐次线性方程组的基础解系是线性无关的.
转载请注明原文地址:https://kaotiyun.com/show/Ui34777K
0
考研数学二
相关试题推荐
设随机变量X的概率密度为,其中a,b为常数.记Φ(x)为N(0,1)的分布函数.若在x=1处f(x)取得最大值,则P{1-<X<1+}=()
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求可逆矩阵P,使得PTAP=B.
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0)经正交变换x=Qy化为标准形f=y12+2y22+5y32,则a=________.
设,其中a,b均为常数,且a>b,b≠0,则()
设向量a=(1,1,-1)T是的一个特征向量.求a,b的值.
当x→(1/2)+时,a(x)=π-3arccosx与β(x)=a(x-1/2)b是等价无穷小,则()
曲线y=xarctanx的斜渐近线是________.
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
随机试题
有一份合同,出售中国小麦10000公吨,合同规定:“自2月份开始,每月装船1000公吨,分十批交货。”卖方从2月份开始交货,但交至第五批小麦时,小麦品质霉变,不适合人类食用,因而买方以此为由,主张以后各批均应撤销。在上述情况下买方能否主张这种权利?为什
溃疡病的外科手术适应证临床标准有哪些?
A.普罗帕酮B.利多卡因C.维拉帕米D.阿托品E.苯妥英钠急性心肌梗死后24小时出现的室性早搏
上人平屋面保护层下的隔离层不应采用哪一种材料?[2011-069]
在对投入和产出进行经济比较时,必须考虑( )的影响。
GIS的栅格空间数据主要来自()。
你为什么选择来建行工作?你对建行的印象如何?如果录取你的话,你会对公司有什么样的要求?
民谚有“础润而雨”的说法,作为劳动人民千百年来宝贵劳作经验的总结,它的主要科学依据体现在()的变化通过“础润”的形式表现出来,从而预示着天气的变化。
近代分权学说最初是()提出的
Sheworkedveryhardandbecameasuccessfulsalesperson______.
最新回复
(
0
)