首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
admin
2019-08-12
46
问题
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
选项
答案
令φ(x)=e
x
f(x),则φ’(x)=e
x
[f(x)+f’(x)], 由|f(x)+f’(x)|≤1得|φ’(x)|≤e
x
,又由f(x)有界得φ(-∞)=0,则 φ(x)=φ(x)-φ(-∞)=∫
-∞
x
φ’(x)dx,两边取绝对值得 e
x
|f(x)|≤∫
-∞
x
|φ’(x)|dx≤∫
-∞
x
e
x
dx=e
x
,所以|f(x)|≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/4SN4777K
0
考研数学二
相关试题推荐
已知线性方程组的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x1x3在x12+x22+x32=1条件下的最大及最小值,并求出最大值点及最小值点.
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
下列矩阵是否相似于对角矩阵?为什么?
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且x为对应的特征向量;(3)为A*的特征值,且x为对应的特征向量.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
求极限:
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则(1+x)sinydσ=______。
随机试题
银基钎料主要是()的合金。
建国以来我们在社会主义建设中所经历的曲折和失误,归根结底,就在于没有完全搞清楚()
水泥按其物化性质属于().
A公司为支付货款,向B公司签发了一张金额为200万元的银行承兑汇票,某商业银行作为承兑人在票面上签章。B公司收到汇票后将其背书转让给C公司,以偿还所欠C公司的租金,但未在被背书人栏内记载C公司的名称。C公司欠D公司一笔应付账款,遂直接将D公司记载为B公司的
若该企业2015年第二季度产量同比增长降低至8%,环比增长速度为20%,则2015年第一季度的产量为()万吨。
下列关于缓刑的表述,正确的有()。
求微分方程y"+y'-2y=xex+sin2x的通解.
设个体域为整数集,下列公式中其值为1的是(61)。
Thehotelprovidesfreeshuttle______tothetrainstationandtheairport.
Inthisageofthekeyboard,somepeopleseemtothinkhandwritinglessonsare______.
最新回复
(
0
)