首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y(χ)是方程y(4)-y″′+y〞-y′=0的解且当χ→0时y(χ)是χ的3阶无穷小,求y(χ).
设y(χ)是方程y(4)-y″′+y〞-y′=0的解且当χ→0时y(χ)是χ的3阶无穷小,求y(χ).
admin
2018-06-12
33
问题
设y(χ)是方程y
(4)
-y″′+y〞-y′=0的解且当χ→0时y(χ)是χ的3阶无穷小,求y(χ).
选项
答案
令p=y′,则p是三阶线性常系数齐次方程的解, p″′-p〞+p′-p=0 ① 方程①的特征方程λ
3
-λ
2
+λ-1=0,即(λ-1)(λ
2
+1)=0,特征根λ=1,λ=±i. 于是①的通解即所有解p=C
1
e
χ
+C
2
cosχ+C
3
sinχ,即 y′(χ)=C
1
e
χ
+C
2
cosχ+C
3
sinχ. 积分得y(χ)=C
1
e
χ
+C
2
sinχ-C
3
cosχ+C
4
. ② 下面确定C
1
,C
2
,C
3
,C
4
之间的关系. 按题意I=[*]为非零常数 [*](C
1
e
χ
+C
2
sinχ-C
3
cosχ+C
4
)=C
1
-C
3
+C
4
=0. ③ 由I=[*]为非零常数 [*](C
1
e
χ
+C
2
cosχ+C
3
sinχ)=C
1
+C
2
=0. ④ 又由I=[*]为非零常数 [*](C
1
e
χ
-C
2
sinχ+C
3
cosχ)=C
1
+C
3
=0. ⑤ 最后I=[*](C
1
-C
2
). ⑥ 由③,④,⑤得C
2
=C
3
=C
1
=[*]. 记[*]为C,由②得y(χ)=(-e
χ
+sinχ-cosχ+2)C,其中C≠0为[*]常数. 此时,由⑥式[*]I=-[*]≠0. 因此,最后求得y(χ)=(-e
χ
+sinχ-cosχ+2)C,其中C≠0为[*]常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Ug4777K
0
考研数学一
相关试题推荐
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设4元齐次线性方程组(1)为而已知另一4元齐次线性方程组(2)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T.(1)求方程组(1)的一个基础解系;(2)当a为何值时,方程组(1)与
设A为n阶矩阵(n≥2),A*为A的伴随矩阵,证明
设4阶矩阵A=(α1,α2,α3,α4),方程组Aχ=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c任意.记B=(α3,α2,α1,β-α4).求方程组Bχ=α1-α2的通解.
设A(2,2),B(1,1),г是从点A到点B的线段下方的一条光滑定向曲线y=y(χ),且它与围成的面积为2,又φ(y)有连续导数,求曲线积分I=∫г[πφ(y)cosπχ-2πy]dχ+[φ′(y)sinπχ-2π]dy.
(Ⅰ)求级数的收敛域;(Ⅱ)求证:和函数S(χ)=定义于[0,+∞)且有界.
落在平静水面的石头,产生同心波纹,若最外一圈波半径的增大率总是6m/s,问在2s末扰动水面面积的增大率为______m2/s.
求到平面2x-3y+6z-4=0和平面12x-15y+16z-1=0距离相等的点的轨迹方程.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
随机试题
以下关于原始反射的说法错误的是
A.既能发散风寒,又能利水消肿B.既能发散风寒,又能温化痰饮C.既能发散风寒,又能和中止呕D.既能发散风寒,又能祛除风湿E.既能发散风寒,又能宣通鼻窍白芷、细辛都具有的功效是()
下列医疗器械中,属于第三类医疗器械产品的是
监管、查验、征税、查私是海关的四项基本任务。()
下列关于公司信贷的基本要素,说法错误的是()。
在对被审计单位财务报表的期初余额进行审计时,注册会计师的以下做法中不正确的有()。
信息技术的发展对数学教育的价值、目标、内容以及()产生了很大的影响。
2016年是全球气候充满极端状况的一年。大气中的二氧化碳平均浓度已经超过400ppm(1ppm为百万分之一)警示线,甲烷浓度也飙升破纪录,气候变化的长期指标上升至新水平。南极和北极地区的海冰面积缩减严重,打破最低纪录。俄罗斯、北极地区气温比长期平均温度高6
Afterashakystart,theMartianflotillathathasarrivedoverthepastfewweeksisgettingdowntobusiness.Twoofthefive
Nancyisnot______famousintheUnitedStates,butalsoabroad.
最新回复
(
0
)