首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e-χ的一个特解,此曲线经过原点且在原点处的切线平行于χ轴. (Ⅰ)求曲线y=y(χ)的表达式; (Ⅱ)求曲线y=y(χ)到χ轴的最大距离; (Ⅲ)计算积分∫0+∞
设曲线y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e-χ的一个特解,此曲线经过原点且在原点处的切线平行于χ轴. (Ⅰ)求曲线y=y(χ)的表达式; (Ⅱ)求曲线y=y(χ)到χ轴的最大距离; (Ⅲ)计算积分∫0+∞
admin
2020-12-10
100
问题
设曲线y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e
-χ
的一个特解,此曲线经过原点且在原点处的切线平行于χ轴.
(Ⅰ)求曲线y=y(χ)的表达式;
(Ⅱ)求曲线y=y(χ)到χ轴的最大距离;
(Ⅲ)计算积分∫
0
+∞
y(χ)dχ.
选项
答案
(Ⅰ)微分方程的特征方程为2λ
2
+λ-1=0 特征值为λ
1
=-1,λ
2
=[*]则微分方程2y〞+y′-y=0的通解为 y=C
1
e
-χ
+C
2
[*] 令非齐次线性微分方稗2y〞+y′-y=(4-6χ)e
-χ
的特解为y
0
(χ)=χ(aχ+b)e
-χ
,代人原方程得a=1,b=0,故原方程的特解为y
0
(χ)=χ
2
e
-χ
,原方程的通解为 [*]. 由初始条件y(0)=y′(0)=0得C
1
=C
2
=0,故y=χ
2
e
-χ
. (Ⅱ)曲线y=χ
2
e
-χ
到χ轴的距离为d=χ
2
e
-χ
,令d′=2χe
-χ
-χ
2
e
-χ
=χ(2-χ)e
-χ
=0.得χ=2. 当χ∈(0,2)时,d′>0;当χ>2时,d′<0,则χ=2为d=χ
2
e
-χ
的最大值点,最大距离为d(2)=[*]. (Ⅲ)∫
0
+∞
y(χ)dχ=∫
0
+∞
χ
2
e
-χ
dχ=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/4W84777K
0
考研数学二
相关试题推荐
现有两只桶分别盛有10L浓度为15g/L的盐水.现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
[*]
适当选取函数φ(x),作变量代换y=φ(x)u,将y关于x的微分方程化为u关于x的二阶常系数线性齐次微分方程,求φ(x)及λ并求原方程的通解.
A、 B、 C、 D、 C
位于上半平面的上凹曲线y=y(χ)过点(0,2),在该点处的切线水平,曲线上任一点(χ,y)处的曲率与及1+y′2之积成反比,比例系数k=,求y=y(χ).
设动点P(χ,y)在曲线9y=4χ2上运动,且坐标轴的单位长是1cm.如果P点横坐标的速率是30cm/s,则当P点经过点(3,4)时,从原点到P点间距离r的变化率是_______.
设z=xy+xF(),其中F为可微函数,则为().
函数f(x)在[0,+∞)上可导,f(0)=1且满足等式f’(x)+f(x)-∫0xf(t)dt=0。求导数f’(x);
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
随机试题
举例说明植物化学物的生物学作用。
男,45岁。双侧上睑下垂2周入院,伴双下肢无力,晨轻暮重,无呼吸及吞咽困难。手术恢复后,下一步的治疗采取
输精管开口于雄性尿道骨盆部的起始部背侧的圆形隆起称为()
患者,女,24岁。患腿痈l周,溃腐3天,脓腐稠厚且多,不易脱落。外用掺药应首选()
关于工程款担保制度的说法,错误的有()。
患者,女,38岁,患风湿性心脏病伴二尖瓣狭窄,突然出现偏瘫,失语。检查:神志清楚,脑脊液正常,心电图提示心房颤动。患者最可能出现的是()。
金沙遗址出土的象征着追求光明、团结奋进、和谐包容精神的“马踏飞燕”被国家文物局批准成为“中国义化遗产”标志。()
以下列举的属于1999年宪法修正案内容的有()
Youmusthavebeentroubledbywhentosay"Iloveyou"becauseitisoneofthegreatestpuzzlesinourlife.Whatifyou
A、Themachinehasn’tbeenrepairedyet.B、The.studentsforgettoreservetheirterminals.C、Thesupervisorwon’tobservethere
最新回复
(
0
)