首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若任一n维非零列向量都是n阶矩阵A的特征向量,证明A是数量矩阵(即A=kE,E是n阶单位矩阵).
若任一n维非零列向量都是n阶矩阵A的特征向量,证明A是数量矩阵(即A=kE,E是n阶单位矩阵).
admin
2020-01-15
62
问题
若任一n维非零列向量都是n阶矩阵A的特征向量,证明A是数量矩阵(即A=kE,E是n阶单位矩阵).
选项
答案
因为任一个n维非零列向量均是A的特征向量,故A有n个线性无关的特征向量,从而A必与对角矩阵相似. 现取n个单位向量 ε
i
=(0,…,0,1,0,…,0)
T
, (i=1,2,…,n) 为A的特征向量,其特征值分别为λ
1
,λ
2
,…,λ
n
,那么令P=(ε
1
,ε
2
,…,ε
n
)=E,有 [*] 如果λ
1
≠λ
2
,则A(ε
1
+ε
2
) =λ
1
ε
1
+λ
2
ε
2
. 因为每个n维向量都是A的特征向量,又应有A(ε
1
+ε
2
)=λ(ε
1
+ε
2
),于是 (λ
1
-λ)ε
1
+(λ
2
-λ)ε
2
=0. 由于Aλ
1
-λ,λ
2
-λ不全为0,与ε
1
,ε
2
线性无关相矛盾,所以必有λ
1
=λ
2
. 同理可知λ
1
=λ
2
=…=λ
n
=k,故A=kE.
解析
转载请注明原文地址:https://kaotiyun.com/show/4WS4777K
0
考研数学一
相关试题推荐
设n为正整数,.(Ⅰ)证明对于给定的n,F(x)有且仅有一个零(实)点,并且是正的,记该零点为an;(Ⅱ)证明幂级数处条件收敛,并求该幂级数的收敛域.
设f(x,y)在平面区域D={(x,y)|x2+y2≤1)上有二阶连续偏导数,且,l为D的边界正向一周.(Ⅰ)证明;(Ⅱ)求二重积分.
设函数y(x)在区间[1,+∞)上有一阶连续导数,且满足及求y(x).
yOz平面上的曲线,绕z轴旋转一周与平面z=1,z=4围成一旋转体Ω,设该物体的点密度μ=r2,其中r为该点至旋转轴的距离,求该物体的质心的坐标.
设l为圆周一周,则空间第一型曲线积分=__________.
设A是3阶矩阵,ξ1=(1,2,-2)T,ξ2=(2,1,一1)T,ξ3=(1,1,t)T是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)T,则()
设A=(α1,α2,α3,α4),其中αi(i=1,2,3,4)是n维列向量,已知Ax=0的基础解系为ξ1=(-2,0,1,0)T,ξ2=(1,0,0,1)T,则下列向量组中线性无关的是()
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3·设α1,α2,α3的特征值依次为1,一1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ,求解线性方程组BX=β.
设z=z(x,y)是由9x2—54xy+90y2—6yz一z2+18=0确定的函数,求证z=z(x,y)一阶偏导数并求驻点;
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
随机试题
宋代文艺创作成就最为全面的作家是________。
高血压性脑出血大多发生在
根据我国仲裁法和民事诉讼法的规定,出现下列哪些情形时,人民法院对仲裁裁决不予执行?()。
火场逃生中,哪项是不正确的方法()
采用直接分配法分配辅助生产费用时,要考虑各辅助生产车间相互提供产品或劳务的情况。()
Onereactiontoalltheconcernabouttropicaldeforestationisablankstarethatasksthequestion,"SinceIdon’tliveint
西双版纳植物园种有两种樱草,一种自花授粉,另一种非自花授粉,即须依靠昆虫授粉。近几年来,授粉昆虫的数量显著减少。另外,一株非自花授粉的樱草所结的种子比自花授粉的要少。显然,非自花授粉樱草的繁殖条件比自花授粉的要差。但是游人在植物园多见的是非自花授粉樱草而不
劳动力的价值内在构成包括
To:SecurityguardsFrom:MichaelReni,BuildingSecurityHeadSubject:SecurityInspectionsTherehavebeenseveralinstancesw
Thedamagetohiscarwas______;therefore,hecouldrepairithimself.
最新回复
(
0
)