首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,且曲线积分∫[3f′(x)-2f(x)+xe2x]ydx+f′(x)dy与路径无关,求f(x).
设f(x)二阶连续可导,且曲线积分∫[3f′(x)-2f(x)+xe2x]ydx+f′(x)dy与路径无关,求f(x).
admin
2020-03-05
51
问题
设f(x)二阶连续可导,且曲线积分∫[3f′(x)-2f(x)+xe
2x
]ydx+f′(x)dy与路径无关,求f(x).
选项
答案
因为曲线积分与路径无关,所以有 f″(x)=3f′(x)-2f(x)+xe
2x
,即f″(x)-3f′(x)+2f(x)=xe
2x
, 由特征方程λ
2
-3λ+2=0得λ
1
=1,λ
2
=2, 则方程f″(x)-3f′(x)+2f(x)=0的通解为f(x)=C
1
e
x
+C
2
e
2x
, 令特解f
0
(x)=x(ax+b)e
2x
,代入原微分方程得a=[*],b=-1, 故所求f(x)=C
1
e
x
+C
2
e
2x
+[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4uS4777K
0
考研数学一
相关试题推荐
设则
已知A是3阶矩阵,r(A)=1,则λ=0()
设函数φ(μ)可导且φ(0)=1,二元函数z=φ(x+y)exy满足=0,则φ(μ)=_______.
设幂级数nan(x一1)n+1的收敛区间为_________.
设∑是部分锥面:x2+y2=z2,0≤x≤1,则曲面积分等于()
已知微分方程y″+by′+y=0的每个解都在区间(0,+∞)上有界,则实数b的取值范围是()
设f(x)=x+1(0≤x≤1),则它以2为周期的余弦级数在x=0处收敛于()
设总体X,Y相互独立且服从N(0,9)分布,(X1,…,X9)与(Y1,…,Y9)分别为来自总体X,Y的简单随机样本,则U=~___________.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f"(ξ)|≥|f(b)一f(a)|.
设在上半平面D={(x,y)丨y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x.y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有
随机试题
A、stomachB、headacheC、characterD、churchDch在church中的发音是[t∫],在其他三项中的发音是[k]。stomach胃;headache头疼;charater特征;church教堂。
脑血栓形成患者服用阿司匹林,目的是
乳剂制备时,先将乳化剂加入到水中再将油加入研磨成初乳,再加水稀释的方法为乳剂制备时,使植物油与含碱的水相发生皂化反应,生成新皂乳化剂随即进行乳化的方法为
善于调经止血、柔肝止痛的白芍炮制品是()。
工程项目的招标工作应在()阶段完成。
混凝土及抹灰面涂饰方法一般采用()等方法。
在应收管理模块初始化中,需要录入每笔()的往来业务单据。
(2015.河南)在对待师生关系方面,新课程中教师的教学行为强调()(常考)
阅读下面材料,选好角度,自拟题目,联系实际,写篇不少于600字的文章,除诗歌以外,文体不限。传说,北山愚公家门前有两座大山挡住了路,他下决心要把山平掉,河曲智叟笑他太傻,认为不可能。愚公回答:“我死了有儿子,儿子死了有孙子,子子孙孙是没有穷尽的。这两座山不
法律规定的公安机关在公益方面应当履行的责任义务包括救护、扶助、调解等方面。()
最新回复
(
0
)