首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
admin
2019-05-14
26
问题
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ
1
+c
1
η
1
+c
2
η
2
,ξ
1
=(1,0,1),η
1
=(1,1,0),η
2
=(1,2,1);(Ⅱ)有通解ξ
2
+cη,ξ
2
=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
选项
答案
公共解必须是(Ⅱ)的解,有ξ
2
+cη的形式,它又是(I)的解,从而存在c
1
,c
2
使得 ξ
2
+cη=ξ
1
+c
1
η
1
+c
2
η
2
,于是ξ
2
+cη一ξ
1
可用η
1
,η
2
线性表示,即r(η
1
,η
2
,ξ
2
+cη一ξ
1
)=r(η
1
,η
2
)=2. [*] 得到c=1/2,从而(I)和(Ⅱ)有一个公共解ξ
2
+η/2=(1/2,3/2,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/4v04777K
0
考研数学一
相关试题推荐
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx’(0,1,一1)=________.
求幂级数的和函数.
已知函数y=,试求其单调区间、极值以及函数图形的凹凸区间、拐点和渐近线,并画出函数的图形。
设单位质点在水平面内做直线运动,初速度v|t=0=v0。已知阻力与速度成正比(比例常数为1),问t为多少时,此质点的速度为,并求到此时刻该质点所经过的路程。
设an为正项级数,下列结论中正确的是()
计算曲线积分I=,其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向。
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ1,…,χ10,已知=1500.(Ⅰ)求μ的置信度为0.95的置信区间;(Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少?(Ⅲ)如果n=1
已知β=(0,2,-1,a)T可以由α1=(1,-2,3,-4)T,α2=(0,1,-1,1)T,α3=(1,3,a,1)T线性表出,则a=_______.
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果EX=μ,DX=σ2,试证明:Xi-与Xj-(i≠j)的相关系数ρ=-
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j.求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
随机试题
A.咽白喉,轻型 B.咽白喉,普通型 C.咽白喉,重型 D.喉白喉 E.鼻白喉全身症状轻微,鼻塞,张口呼吸,鼻前庭处可见假膜:()
舌边有齿痕,常伴有的舌象变化是
酪氨酸激酶受体的配体是
A、月经前或月经来潮12小时内进行诊断性刮宫B、月经干净后3天进行诊断性刮宫C、在月经第3天进行诊断性刮宫D、在月经第5天进行诊断性刮宫E、月经周期任何日期内均可进行诊断性刮宫黄体发育不全者()
鹅口疮的口腔护理应为:
对企业申请中央预算内投资补助和贷款贴息项目的资金申请报告进行咨询评估的重点主要包括()
项目组织结构中的层次包括( )。
儿童画没有原始艺术的那些历史负载,但在形式体验上有许多相似之处。儿童有一种未被扭曲的直觉,充满好奇心和新鲜感,能够将自己感兴趣的特征强烈地表现出来。儿童凭感性作画,直取主要印象,还有那无拘无束的想象力。早期的儿童是自我中心主义者,儿童毫不顾忌地表现自己的感
疫苗的发现可谓是人类发展史上一件具有里程碑意义的事件。因为从某种意义上来说人类繁衍生息的历史就是人类不断同疾病和自然灾害作斗争的历史,控制传染病最主要的手段就是预防,而接种疫苗被认为是最行之有效的措施。威胁人类几百年的天花病毒在牛痘疫苗出现后便被彻底消灭了
Cryingandwakingupinthemiddleofnightareroutineduringanynewborn’sfirstfewmonths.Butifthosecryingepisodescont
最新回复
(
0
)