首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)可导且0≤f’(x)≤(k﹥0),对任意的xn,作xn+1=f(xn)(n=0,1,2,...),证明:存在且满足方程f(x)=x.
设函数f(x)可导且0≤f’(x)≤(k﹥0),对任意的xn,作xn+1=f(xn)(n=0,1,2,...),证明:存在且满足方程f(x)=x.
admin
2019-09-23
77
问题
设函数f(x)可导且0≤f’(x)≤
(k﹥0),对任意的x
n
,作x
n+1
=f(x
n
)(n=0,1,2,...),证明:
存在且满足方程f(x)=x.
选项
答案
x
n+1
-x
n
=f(x
n
)-f(x
n+1
)=f’(ε
n
)(x
n
-x
n-1
),因为f’(x)≥0,所以x
n+1
-x
n
与x
n
-x
n-1
同号,故{x
n
}单调。 |x
n
|=|f(x
n-1
)|=[*] [*] 即{x
n
}有界,于是[*]存在, 根据f(x)的可导性得f(x)处处连续,等式x
n+1
=f(x
n
)两边令n→∞得 [*],原命题得证。
解析
转载请注明原文地址:https://kaotiyun.com/show/51A4777K
0
考研数学二
相关试题推荐
微分方程满足初始条件y(1)=1的特解是y=_______.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明:aij=AijATA=E且|A|=1;
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设函数f(x)在区间[0,1]上连续,并设∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|∫abf(z)dx-(b-a)f(a)|≤(b-a)2.
设f(x)=,x≥0,判断f(x)是否单调,是否有界?
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.求曲线Γ的表达式.
以下四个命题中,正确的是
设A,B为同阶方阵。举一个二阶方阵的例子说明第一小题的逆命题不成立;
随机试题
疫情防控期间,你在某一天工作结束后正要下班,接到一个居民电话,该居民称某小区有人从中风险地区回来,而且有与亲友聚餐的经历。请问作为街道工作人员,面对此事你该怎么办?
以下()是计算机程序设计语言所经历的主要阶段。
A.HAVB.HBVC.HCVD.HUV儿童发病多见于
患者,女性,26岁,颊向阻生,在行上牙槽后神经、腭前神经阻滞麻醉5分钟后出现左下唇麻木感,探颊侧牙龈仍有痛感,其原因可能是
利多卡因用于局部浸润麻醉或神经阻滞时,成人一次限量为
涩肠,温中行气涩肠,固崩止带
监理服务是监理单位的高智能投入,服务工作的好坏取决于()。
日出:日落
设向量组α1,α2,α3为R。的一个基.β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3.证明向量β1,β2,β3为R3的一个基;
Thedebateaboutproblemdrinkingandhowtostopitnowadayscentresmostontheworking-classyoung.Theyare【M1】______highly
最新回复
(
0
)