首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)可导且0≤f’(x)≤(k﹥0),对任意的xn,作xn+1=f(xn)(n=0,1,2,...),证明:存在且满足方程f(x)=x.
设函数f(x)可导且0≤f’(x)≤(k﹥0),对任意的xn,作xn+1=f(xn)(n=0,1,2,...),证明:存在且满足方程f(x)=x.
admin
2019-09-23
74
问题
设函数f(x)可导且0≤f’(x)≤
(k﹥0),对任意的x
n
,作x
n+1
=f(x
n
)(n=0,1,2,...),证明:
存在且满足方程f(x)=x.
选项
答案
x
n+1
-x
n
=f(x
n
)-f(x
n+1
)=f’(ε
n
)(x
n
-x
n-1
),因为f’(x)≥0,所以x
n+1
-x
n
与x
n
-x
n-1
同号,故{x
n
}单调。 |x
n
|=|f(x
n-1
)|=[*] [*] 即{x
n
}有界,于是[*]存在, 根据f(x)的可导性得f(x)处处连续,等式x
n+1
=f(x
n
)两边令n→∞得 [*],原命题得证。
解析
转载请注明原文地址:https://kaotiyun.com/show/51A4777K
0
考研数学二
相关试题推荐
设齐次线性方程组Ax=0为(I)求方程组(*)的基础解系和通解;(Ⅱ)问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ﹢η=(1,2,-3)T﹢(2,-1,1)T,其中k为任意常数.证明:(I)方程组(α1,α2)x=β有唯一解,并求该解;(Ⅱ)方程组(α1﹢α2﹢α3﹢β,α1,α2,α3)x-β有无穷多解
“|f(x)|在x=a处可导”是“f(x)在x=a处可导”的()
设f(x)在区间(0,﹢∞)上连续,且严格单调增加.试求证:F(x)=在区间(0,﹢∞)上也严格单调增加.
设A=(α1,α2,α3,α4),αi(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ1=(-2,0,1,0)T,ξ2=(1,0,0,1)T,则线性无关向量组是()
计算,其中D由x=-2,y=2,x轴及曲线围成.
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明:aij=一AijATA=E且|A|=一1.
验证下列各给定函数是其对应微分方程的解
若函数其中f是可微函数,且则函数G(x,y)=()
以下三个命题,①若数列{un)收敛A,则其任意子数列必定收敛于A;②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A;③若数列{x2n}与{xn+}都收敛于A,则数列{xn}必定收敛于A正确的个数为()
随机试题
需要桥接两条曲线间的一段空隙,结果既要保证相切也要跟随先前两条曲线的总体形状。应该选择下面哪一种连续的方法?
A.100级B.1000级C.10000级D.100000级E.300000级《药品生产质量管理规范》附录规定供角膜创伤或手术用滴眼剂的配制和灌装的洁净区洁净级别应为
王先生,70岁。高血压史30年。于家中如厕时突感头晕,随即倒地而送至医院,诊断为脑出血。体检:昏迷,左侧偏瘫,血压为25.3/14.6kPa(190/110mmHg)。护士为保持王先生安静卧床,护理动作轻柔,其目的是
该工程还有哪些安全风险源未被辨识?对此应制定哪些控制措施?针对本工程,安全验收应包含哪些项目?
适用海关A类管理的加工贸易企业进口的78种客供辅料,且总价不超过()的,可以不设立银行保证金台账,甚至不申领《登记手册》。
在对财务报表审计完成后,注册会计师应以适当方式与治理层沟通。()
假定你是李薇,在一位名叫TigerMom的学生家长的博客上,你看到如下内容。请根据博客内容、写作要点和要求,给这位家长回复。I’mthemotherofafourteen-year-old.Ihavearuleformy
国家政治保卫局于()建立。
Doyouwanttoliveforever?Bytheyear2050,youmightactuallygetyourwish—providingyouarewillingtoleaveyourbiolog
Anewpartnerpushesouttwoclosefriendsonaverage,leavingloverswithasmallerinnercircleofpeopletheycanturntoin
最新回复
(
0
)