首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1=为非齐次线性方程组AX=的解,则( ).
设A为三阶矩阵,α1=为非齐次线性方程组AX=的解,则( ).
admin
2021-01-14
31
问题
设A为三阶矩阵,α
1
=
为非齐次线性方程组AX=
的解,则( ).
选项
A、当t≠2时,r(A)=1
B、当t≠2时,r(A)=2
C、当t=2时,r(A)=1
D、当t=2时,r(A)=2
答案
A
解析
方法一:
当t≠2时,α
1
一α
2
=
,α
1
一α
3
=
为AX=0的两个线性无关的解,
从而3一r(A)≥2,r(A)≤1,又由A≠0得r(A)≥1,即r(A)=1,选(A).
方法二:
令B=
,由已知条件得AB=
,r(AB)=1,
当t≠2时,B为可逆矩阵,从而r(AB)=r(A)=1,选(A).
转载请注明原文地址:https://kaotiyun.com/show/5D84777K
0
考研数学二
相关试题推荐
(15年)设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积.若V1=V2,求A的值.
[*]
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成平面图形绕x轴旋转一周的旋转体体积最小.
函数f(x)在[0,+∞)上可导,f(0)=1且满足等式f’(x)+f(x)-∫0xf(t)dt=0。证明:当x≥0时,成立不等式e-x≤f(x)≤1成立。
(2011年试题,三)已知函f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0y)dxdy=a其中D=|(x,y)|0≤x≤1,0≤y≤1},计算二重积分
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明:(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
设四元齐次线性方程组求:(1)与(2)的公共解。
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:常数λ>0.
设矩阵A的伴随矩阵A*=,且ABA—1=BA—1+3E,其中E为四阶单位矩阵,求矩阵B。
随机试题
男性,81岁,因高血压就诊,服药后当天自觉胸闷、头晕、脉缓,并摔倒一次,应暂停哪一种药物,进行观察
A.续断B.鹿茸C.蛤蚧D.补骨脂E.肉苁蓉既补肺气,又定喘嗽的药是()。
乳腺癌的临床表现最典型的有()。
纵向承重体系荷载的主要传递线路是()。
暂准进出境货物在海关申报进出境时,暂不缴纳进出口税费,但收发货人须向海关提供担保。()
暂不征收个人所得税的是()。
资本周转时间包括()。
在下列理论观点中,对社会心理学的诞生影响最小的是()。
探究学习实施的过程是()
辛亥革命后,一些有识之士倡导发展实业,______和______成为当时并存的两大社会潮流。
最新回复
(
0
)