首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
admin
2018-05-21
27
问题
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
选项
答案
令φ(x)=e
x
f(x),则φ’(x)=e
x
[f(x)+f’(x)], 由|f(x)+f’(x)|≤1得|φ’(x)|≤e
x
,又由f(x)有界得φ(-∞)=0,则φ(x)=φ(x)-φ(-∞)=∫
-∞
x
φ’(x)dx,两边取绝对值得 e
x
|f(x)|≤∫
-∞
x
|φ’(x)|dx≤∫
-∞
x
e
x
dx=e
x
,所以|f(x)|≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/5pr4777K
0
考研数学一
相关试题推荐
求幂级数的收敛域及和函数。
(1)比较∫01|lnt|[ln(1+t)n]dt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由.(2)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限.
设曲线L:f(x,y)=1(具有一阶连续偏导数),过第二象限内的点M和第四象限内的点N,为L上从点M到点N的一段弧,则下列积分小于零的是()
方程y"’+2y"=x2+xe—2x的特解形式为()
设有直线L:及平面∏:4x一2y+z一2=0,则直线L()
假定所涉及的反常积分(广义积分)收敛,证明∫—∞+∞f(x一)dx=∫—∞+∞f(x)dx.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt.(1)证明F’(x)单调增加.(2)当x取何值时,F(x)取最小值.(3)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设随机变量X与Y相互独立,且X服从正态分布N(0,1),Y在区间[-1,3]上服从均匀分布,则概率P{max(X,y)≥0}=________.
设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是多少?
设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立,以y表示在中途下车的人数,求在发车时有,n个乘客的条件下,中途有m人下车的概率;
随机试题
Hedidn’tremember______thebookandsaidhewouldgiveittomethenextday.
[*]
A.脑出血B.脑血栓形成C.短暂性脑缺血发作D.蛛网膜下腔出血E.吉兰-巴雷综合征首发症状常为四肢对称性无力
基金财产保管的基本要求包括()。
青城山与()一起于2000年被列入《世界遗产名录》。
今年4月份,马里兰大学的电气工程师伊戈尔.斯莫利亚尼诺夫(IgorSmolyaninov)和于菊红(Yu—JuHong)从他们的宇宙大爆炸装置中得出结论,认为时间旅行只能成为传说。他们利用光在超材料中的传播,模拟了大爆炸中粒子的传播过程。这的确是一个令人震
我国广义的秘书定义中,“领导”一词()。
A.条件(1)充分,但条件(2)不充分.B.条件(2)充分,但条件(1)不充分.C.条件(1)和条件(2)单独都不充分,但联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和条件(2)单独都不充分,联合起来也不充分.x2+y2+
某工厂生产甲、乙两种产品,生产1公斤甲产品需要煤9公斤、电4°、油3公斤,生产1公斤乙产品需要煤4公斤、电5°、油10公斤。该工厂现有煤360公斤、电200°、油300公斤。已知甲产品每公斤利润为7千元,乙产品每公斤利润为1.2万元,为了获取最大利润应该生
SecretE-Scores[A]Americansareobsessedwiththeirscores.Creditscores,G.P.A.’s,SAT’s,bloodpressureandcholesterol(
最新回复
(
0
)