首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,且x→a+时函数f(x)的极限存在,则函数f(x)在(a,b]上有界。
设f(x)在[a,b]上连续,且x→a+时函数f(x)的极限存在,则函数f(x)在(a,b]上有界。
admin
2022-09-05
63
问题
设f(x)在[a,b]上连续,且x→a
+
时函数f(x)的极限存在,则函数f(x)在(a,b]上有界。
选项
答案
设[*]由极限的定义可知,对于ε=1,存在正数δ,使得当0<x-a<δ时,有 ∣f(x)-A∣<ε 也就是A-1<f(x)<A+1 对于闭区间[a+δ,b]由函数f(x)的连续性,必存在常数K,使得对任一x∈[a+δ,b]有 ∣f(x)∣≤K 取M=max{K,∣A+1∣,∣A-1∣},则对任何x∈(a,b]有 ∣f(x)∣≤M 这表明函数f(x)在(a,b]上有界。
解析
转载请注明原文地址:https://kaotiyun.com/show/5rR4777K
0
考研数学三
相关试题推荐
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设f(lnx)=,则f(x)dx=_____________.
证明:线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅱ)与(Ⅲ)是同解方程组.
设a1,a2,…,an为n个n维向量,证明:a1,a2,…,an线性无关的充分必要条件是任一n维向量总可由a1,a2,…,an线性表示.
若向量组a1,a2,a3,a4线性相关,且向量a4不可由向量组a1,a2,a3线性表示,则下列结论正确的是().
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f′(x)>0,如果存在,证明:f(x)>0,x∈(a,b);
设曲线f(x)=xn(n为正整数)在点(1,1)处的切线与x轴相交于点(ξn,0),求
设an为曲线y=xn与y=xn+1(n=1,2,…)所围区域的面积,记求S1,S2的值.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
随机试题
当颌位记录时下颌前伸,在戴牙时,全口义齿前牙表现为()
胃十二指肠溃疡病死亡最常见的原因是()。
“本年利润”账户是指将收入与费用进行配比的账户,因此属于损益类账户。()
等产量曲线有哪些特征?这些特征的经济含义是什么?并请解释生产可能性曲线凸向原点的原因。
在凯恩斯的货币需求函数中,交易性需求主要受( )因素的影响。
旅行社经营许可证是旅行社经营旅游业务的资格证明,由国家旅游局统一印制并颁发。
某县民政局负责城市居民最低生活保障工作的小钱,接到孙某的举报信,反映低保对象李某与其是麻将牌友,经常一起打麻将赌博,输赢很大,怀疑李某不符合低保条件,涉嫌骗取低保待遇。针对这一举报,小钱正确的处理方式是()
人类对于电子计算机的研制逐步升级,从每秒计算几百次、几千次、几万次到上亿次,口臻完善
Inhis1979book,TheSinkingArk,biologistNormanMyersestimatedthat(1)_____ofmorethan100human-causedextinctionsoccu
Whatdeterminesthekindofpersonyouare?Whatfactorsmakeyoumoreorless【C1】______,intelligent,orabletoreadamap?Al
最新回复
(
0
)