首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,B=且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
设A=,B=且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
admin
2019-08-23
61
问题
设A=
,B=
且A~B.
(1)求a;
(2)求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(-1)+2,于是a=0. (2)由|λE-A|=[*]=(λ+1)(λ-1)(λ-2)=0 得A,B的特征值为λ
1
=-1,λ
2
=1,λ
3
=2. 当λ=-1时,由(-E-A)X=0即(E+A)X=0得ξ
1
=(0,一1,1)
T
; 当λ=1时,由(E-A)X=0得ξ
2
=(0,1,1)
T
; 当λ=2时,由(2E-A)X=0得ξ
3
=(1,0,0)
T
, 取P
1
=[*], 则P
1
-1
AP
1
=[*] 当λ=-1时,由(-E-B)X=0即(E+B)X=0得η
1
=(0,1,2)
T
; 当λ=1时,由(E-B)X=0得η
2
(1,0,0)
T
; 当λ=2时,由(2E-B)X=0得η
3
=(0,0,1)
T
, 取P
2
=[*], 则P
2
-1
BP
2
=[*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 令P=P
1
P
2
-1
=[*], 则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/67N4777K
0
考研数学二
相关试题推荐
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
已知A=可对角化,求可逆矩阵P及对角矩阵∧,使P-1AP=A.
设A,B均为n阶矩阵,且A+B=AB.(1)证明A-E可逆;(2)证明AB=BA.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设B=2A—E,证明:B2=E的充分必要条件是A2=A.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求A的特征值和特征向量;
随机试题
Rememberbooks?Theywerethosepiecesofpaperwithwordsprintedonthem【C1】________inbetweentwo,sometimes,【C2】________cove
下列关于卵泡膜细胞瘤的描述正确的有
患有心脏病的孕妇在分娩期要注意
下面哪项不是SCA6的特点
99.2011年7月,我国商务部针对从美国进口的某机电产品发起反倾销调查。根据我国《反倾销条例》,反倾销措施包括临时反倾销措施、价格承诺和反倾销税。关于反倾销措施,下列判断正确的有:
案例分析:“圆锥的体积”的教学片段:师:今天我们来学习计算圆锥的体积(板书课题),能否利用我们已有的经验求出圆锥体积?生1:底面积×高。生2(班上有名的“马虎大王”小明):不对!“底面积×高”是算圆柱的体积,圆锥是下
4.1/36,1/5,1,3,4,()
①据此,洪堡提出了青藏高原“热岛效应”理论 ②这不符合常理 ③早在18世纪末,德国科学家洪堡就发现,赤道附近的高山雪线,比中纬度的青藏高原许多高山的雪线低200米左右 ④故其热量较同纬度、同海拔高度的其他地区高得多,甚至比赤道附近的同海拔地区也
instrumentaltranslation
以下语句的输出结果是______。PrintFormat$("32548.5","000,000.00")
最新回复
(
0
)