首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。求: (Ⅰ)A2; (Ⅱ)矩阵A的特征值和特征向量。
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。求: (Ⅰ)A2; (Ⅱ)矩阵A的特征值和特征向量。
admin
2019-05-11
100
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0。记n阶矩阵A=αβ
T
。求:
(Ⅰ)A
2
;
(Ⅱ)矩阵A的特征值和特征向量。
选项
答案
(Ⅰ)对等式α
T
β=0两边取转置,有(α
T
β)
T
=β
T
α=0,即β
T
α=0。 利用β
T
α=0及矩阵乘法的运算法则,有 A
2
=(αβ
T
)
2
=αβ
T
αβ
T
=α(β
T
α)β
T
=α0β
T
=0αβ
T
=0, 即A
2
是n阶零矩阵。 (Ⅱ)设λ是A的任一特征值,ξ(ξ≠0)是A属于特征值λ的特征向量,即Aξ=λξ。 对上式两边左乘A得A
2
ξ=Aλξ=λ(Aξ)=λ(λξ)=λ
2
ξ,由(Ⅰ)的结果A
2
=O,得λ
2
ξ=A
2
ξ=0,因ξ≠0,故λ=0(n重根),即矩阵的全部特征值为零。 下面求A的特征向量:先将A写成矩阵形式 A=αβ
T
=[*]。 不妨设a
1
≠0,b
1
≠0,则有 [*] 于是得方程组(0E—A)x=0的同解方程组b
1
x
1
+b
2
x
2
+b
3
x
3
=0,这样基础解系所含向量个数为n一r(0E—A)=n一1。 选x
2
,…,x
n
为自由未知量,将它们的组值(b
1
,0,…,0),(0,b
1
,…,0),…,(0,0,…,b
1
)代入,可解得基础解系为 ξ
1
=(一b
2
,b
1
,0,…,0),ξ
2
=(一b
3
,0,b
1
,…,0),…,ξ
n-1
=(一b
n
,0,0,…,b
1
), 则A的属于λ=0的全部特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,其中k
1
,k
2
,…,k
n-1
为不全为零的任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/6BJ4777K
0
考研数学三
相关试题推荐
设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.
当x>0时,证明:.
设商品需求函数为Q=-4,求收益R对价格P的弹性.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设.问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
设X在区间[-2,2]上服从均匀分布,令Y=求:(1)Y,Z的联合分布律;(2)D(Y+Z).
设z=f(x,y)在点(1,1)处可微,f(1,1)=1,f′1(1,1)=a,f′2(1,1)=b,又u=f[x,f(x,x)],求
设f(x)为连续函数,证明:
连续函数f(x)满足则f(x)=__________.
随机试题
采用肾上腺皮质激素降低颅内压的作用原理是
当空调房间有吊顶可利用,且单位面积送风量较大、工作区温差要求严格时,宜采用何种送风方式?
建筑施工中,离心式水泵是()离心水泵。
某工程项目施工合同于2000年12月签订,约定的合同工期为20个月,2001年1月开始正式施工。施工单位按合同工期要求编制了混凝土结构工程施工进度时标网络计划,如图5-1所示,并经专业监理工程师审核批准。该项目的各项工作均按最早开始时间安
根据消费税法律制度的规定,下列各项中,应在生产、进口、委托加工环节缴纳消费税的有()。
甲公司系ABC会计师事务所的常年审计客户,主要从事电子产品的生产和销售。ABC会计师事务所委派X注册会计师担任甲公司2012年度财务报表审计项目合伙人。在审计存货时,X注册会计师编制了相关工作底稿,部分内容摘录如下:资料一:注释1:A原材料主要用于生
请从四个学习领域论述初中美术新课程标准中的分目标。
如图所示,一个长方体挖掉了部分圆柱体,从任意面剖开,哪一项不可能是该立体图形的截面?
Thewordscienceisheardsoofteninmoderntimesthatalmosteverybodyhassomenotionofitsmeaning.Ontheotherhand,its
Therelocateda______architecturechurchintheoldcity,whichwasacombinationoftileartofancientGreeceandRome.
最新回复
(
0
)