首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1,y2是一阶线性非齐次微分方程y’+P(x)y=Q(x)的两个特解,如果常数a,b使ay1+by2是该方程的解,ay1-by2是该方程对应的齐次方程的解,则( )
设y1,y2是一阶线性非齐次微分方程y’+P(x)y=Q(x)的两个特解,如果常数a,b使ay1+by2是该方程的解,ay1-by2是该方程对应的齐次方程的解,则( )
admin
2018-11-22
65
问题
设y
1
,y
2
是一阶线性非齐次微分方程y’+P(x)y=Q(x)的两个特解,如果常数a,b使ay
1
+by
2
是该方程的解,ay
1
-by
2
是该方程对应的齐次方程的解,则( )
选项
A、
B、
C、
D、
答案
A
解析
因为y
1
,y
2
是微分方程y’+P(x)y=Q(x)的两个特解,所以
y’
i
+P(x)y
i
=Q(x) (i=1,2),
因为ay
1
+by
2
是该方程的解,所以
(ay’
1
+by’
2
)+P(x)(ay
1
+by
2
)=Q(x),
即 a[y’
1
+P(x)y
1
]+b[y’
2
+P(x)y
2
]=Q(x), aQ(x)+bQ(a)=Q(x),
于是a+b=1.又因为ay
1
-by
2
是该方程对应的齐次方程的解,所以
(ay’
1
-by’
2
)+P(x)(ay
1
-by
2
)=0,
即 a[y’
1
+P(x)y
1
]-b[y’
2
+P(x)y
2
]=0, aQ(x)-bQ(x)=0,
于是a-b=0.解关于a,b的方程组,得
转载请注明原文地址:https://kaotiyun.com/show/6BM4777K
0
考研数学一
相关试题推荐
设L:+y2=1(x≥0,y≥0),过L上一点作切线.求切线与抛物线所围成面积的最小值.
当x→0时,无穷小α=的阶数由高到底的次序为()
已知f(x)在x=0的某个邻域内连续,且f(0)=0,=2,则在点x=0处f(x)()
设f(x)二阶连续可导,f’(0)=0,且=一1,则().
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1)及直线l:z+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
求证:ex+e-x+2cosx=5恰有两个根.
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则k1η1+…+ksηs为方程组AX=b的解的充分必要条件是___________.
设x=2a+b,y=ka+b,其中|a|=1,|b|=2,且a⊥b.若以x和y为邻边的平行四边形面积为6,则k的值为_________.
行列式的第4行元素的余子式之和的值为_________.
求极限
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)