首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1,y2是一阶线性非齐次微分方程y’+P(x)y=Q(x)的两个特解,如果常数a,b使ay1+by2是该方程的解,ay1-by2是该方程对应的齐次方程的解,则( )
设y1,y2是一阶线性非齐次微分方程y’+P(x)y=Q(x)的两个特解,如果常数a,b使ay1+by2是该方程的解,ay1-by2是该方程对应的齐次方程的解,则( )
admin
2018-11-22
43
问题
设y
1
,y
2
是一阶线性非齐次微分方程y’+P(x)y=Q(x)的两个特解,如果常数a,b使ay
1
+by
2
是该方程的解,ay
1
-by
2
是该方程对应的齐次方程的解,则( )
选项
A、
B、
C、
D、
答案
A
解析
因为y
1
,y
2
是微分方程y’+P(x)y=Q(x)的两个特解,所以
y’
i
+P(x)y
i
=Q(x) (i=1,2),
因为ay
1
+by
2
是该方程的解,所以
(ay’
1
+by’
2
)+P(x)(ay
1
+by
2
)=Q(x),
即 a[y’
1
+P(x)y
1
]+b[y’
2
+P(x)y
2
]=Q(x), aQ(x)+bQ(a)=Q(x),
于是a+b=1.又因为ay
1
-by
2
是该方程对应的齐次方程的解,所以
(ay’
1
-by’
2
)+P(x)(ay
1
-by
2
)=0,
即 a[y’
1
+P(x)y
1
]-b[y’
2
+P(x)y
2
]=0, aQ(x)-bQ(x)=0,
于是a-b=0.解关于a,b的方程组,得
转载请注明原文地址:https://kaotiyun.com/show/6BM4777K
0
考研数学一
相关试题推荐
设随机变量X的分布函数为F(x)=0.2F1(x)+0.8F1(2x),其中F1(y)是服从参数为1的指数分布的随机变量的分布函数,则D(X)为().
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为()
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(x)fY(y);(Ⅱ)z=2X一Y的概率密度fZ(z).
已知曲线积分∫L[excosy+yf(x)]dx+(x3-exsiny)dy与路径无关且f(x)有连续的导数,则f(x)=________
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=________.
计算(0≤t≤2π)与x轴所围成的区域.
(02年)计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)一g(x)=o((x一x0)2)(x→x0).
下列论述中正确的是[].
随机试题
下列有关闭式胸腔引流术的叙述,正确的有
神志不清,语言重复,声音低微,时断时续,称为
腹部摄影特点的叙述,正确的是
具有疏散风热、清利头目共同功效的药物是
44岁已婚妇女,白带多伴有外阴痒2周。查外阴皮肤有抓痕,检查见阴道后穹窿处有多量稀薄泡沫状分泌物,阴道黏膜有多处多个散在红色斑点。该患最可能的诊断是
商业助学贷款中,以第三方担保的,保证人承担()。
下列不属于金融工具特点的是()。
我们当前面临的数字社会至少有以下三个特征:第一,数字化技术正在从一个商业应用技术变成民用的产品和文化,这是数字社会的基本特征。过去一个数字化技术可能会制造出很多产品,而今数字化技术已成为消费品,成为人们生活和文化的一部分。第二,社会存在
Duringthelast15years,theEarth’ssurfacetemperatureroseatarateof0.04°Cadecade,farslowerthanthe0.18℃increase
Itistimethatthechildren______.
最新回复
(
0
)