首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
admin
2019-03-21
99
问题
设有两个非零矩阵A=[a
1
,a
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
(1)计算AB
T
与A
T
B;
(2)求矩阵AB
T
的秩r(AB
T
);
(3)设C=E一AB
T
,其中E为n阶单位阵.证明:C
T
C=E一BA
T
—AB
T
+BB
T
的充要条件是A
T
A=1.
选项
答案
(1)AB
T
=[*],A
T
=a
1
b
1
+a
2
b
2
+a
n
b
n
. (2)因AB
T
各行(或列)是第1行(列)的倍数,又A,B皆为非零矩阵,故r(AB
T
)=1. (3)由于C
T
C=(E一AB
T
)
T
(E一AB
T
)=(E一BA
T
)(E一AB
T
)=E一BA
T
一AB
T
+BA
T
AB
T
. 故若要求C
T
C=E一BA
T
一AB
T
+BB
T
,则BA
T
AB
T
一BB
T
=O,B(A
T
A一1)B
T
=O,即 (A
T
A一1)BB
T
=O. 因为B≠O,所以BB
T
≠O.故C
T
C=E一BA
T
一AB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/6GV4777K
0
考研数学二
相关试题推荐
若
设A是n阶矩阵,α是n维列向量,若则线性方程组()
讨论函数f(x)=在x=0处的连续性与可导性.
证明奇次方程a0x2n+1+a1x2n+…+a2nx+a2n+1=0一定有实根,其中常数a0≠0.
求曲线r=a(1+cosθ)的曲率.
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
已知ξ=是矩阵A=的一个特征向量.(1)试确定a,b的值及特征向量考所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设α1,α2……αn为n个线性无关的n维列向量,β1,β2,…,βn为任意n个n维列向量。证明:α1,α2……αn可由β1β2……βn线性表示的充要条件是β1β2……βn线性无关。
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
随机试题
动脉血H+浓度升高主要通过外周化学感受器兴奋呼吸,其主要原因是
下列因素中,不刺激胆汁分泌的是
钻孔灌注桩的水下混凝土的含砂率宜为()。
“备案号”栏:()。“成交方式”栏:()。
甲、乙、丙、丁在中国境内投资设立了一家中外合资经营企业,其中:甲、乙为国有企业,丙为集体所有制企业,丁为外国企业。甲、乙、丙、丁的出资比例依次为30%、30%、10%、30%。该合营企业股东发生的下列行为中,依法应当进行国有资产评估的有()。
下列选项中,()是物质资料生产方式所体现的关系。
2008年以来,索马里附近海域先后发生累计120起海盗劫船事件。海盗何以猖獗?甲乙丙丁四人有断定如下:甲:海盗猖獗的主因是被劫船只的船主通常都愿支付高额赎金。乙:如果海盗猖獗的主因是被劫船主愿意支付高额赎金,那么肯定会助长了海盗的气焰。丙:确实助长了海盗的
贷币的本质是()
MRPII的缺点之一是()。
Whenisthehand-indate?
最新回复
(
0
)