首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
admin
2019-03-21
101
问题
设有两个非零矩阵A=[a
1
,a
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
(1)计算AB
T
与A
T
B;
(2)求矩阵AB
T
的秩r(AB
T
);
(3)设C=E一AB
T
,其中E为n阶单位阵.证明:C
T
C=E一BA
T
—AB
T
+BB
T
的充要条件是A
T
A=1.
选项
答案
(1)AB
T
=[*],A
T
=a
1
b
1
+a
2
b
2
+a
n
b
n
. (2)因AB
T
各行(或列)是第1行(列)的倍数,又A,B皆为非零矩阵,故r(AB
T
)=1. (3)由于C
T
C=(E一AB
T
)
T
(E一AB
T
)=(E一BA
T
)(E一AB
T
)=E一BA
T
一AB
T
+BA
T
AB
T
. 故若要求C
T
C=E一BA
T
一AB
T
+BB
T
,则BA
T
AB
T
一BB
T
=O,B(A
T
A一1)B
T
=O,即 (A
T
A一1)BB
T
=O. 因为B≠O,所以BB
T
≠O.故C
T
C=E一BA
T
一AB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/6GV4777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,a)内可导,,求证:f(x)在(-∞,a)内至少有一个零点.
设f(x)在(a,b)内可导,且x0∈(a,b)使得f’(x)又f(x0)>0(<0),(如图4.13),求证:f(x)在(a,b)恰有两个零点.
计算下列各题:(Ⅰ)由方程xy=yx确定x=x(y),求(Ⅱ)方程y-xey=1确定y=y(x),求y"(x);(Ⅲ)设2x-tan(x-y)=∫0x-ysec2tdt,求
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
求f(χ)=的间断点并判断其类型.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,求f(0)与f(一1)的值;
随机试题
知识产权
如果货物在空运单上约定的到达时间届满后()天内仍没到达,收货人便可以向承运人主张权利。
纳税人将自产、委托加工或者外购的货物用于集体福利或个人消费的,均视同销售,征收增值税。()
企业发生的财务费用,在编制现金流量表时,均应作为筹资活动项目反映。()
实施“中小学教师继续教育工程”应放在突出地位的有()。
叶圣陶、郑振铎等都是江浙人,有着江浙知识分子特有的理性和宽容。他们像朱自清一样,都是新文学的热心鼓吹者,写得一手漂亮的白话散文。他们接受过五四新文化的洗礼,______,无论对中西之学,都采取平和的一视同仁态度。填入横线上最恰当的是()。
债务人甲怠于行使其对乙的到期债权,对债权人丙造成损害的,债权人丙可以向人民法院请求以自己的名义代为行使债务人的债权。但债权人丙提起代位权诉讼,应当符合的条件不包括()。
中国共产党在马克思主义指导下,立足中国国情,走出以农村包围城市、武装夺取政权的新民主主义道路。这给我们的哲学启示是()。
下列关于隋唐时期货币表述准确的是()。①隋朝使用五铢钱②开元年间开始统一使用开元通宝③开元通宝是唐朝的通用货币④开元通宝是唐代以后历代王朝货币的范式
共同要素说强调以下哪种因素在学习中的作用?
最新回复
(
0
)