首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
admin
2019-03-21
77
问题
设有两个非零矩阵A=[a
1
,a
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
(1)计算AB
T
与A
T
B;
(2)求矩阵AB
T
的秩r(AB
T
);
(3)设C=E一AB
T
,其中E为n阶单位阵.证明:C
T
C=E一BA
T
—AB
T
+BB
T
的充要条件是A
T
A=1.
选项
答案
(1)AB
T
=[*],A
T
=a
1
b
1
+a
2
b
2
+a
n
b
n
. (2)因AB
T
各行(或列)是第1行(列)的倍数,又A,B皆为非零矩阵,故r(AB
T
)=1. (3)由于C
T
C=(E一AB
T
)
T
(E一AB
T
)=(E一BA
T
)(E一AB
T
)=E一BA
T
一AB
T
+BA
T
AB
T
. 故若要求C
T
C=E一BA
T
一AB
T
+BB
T
,则BA
T
AB
T
一BB
T
=O,B(A
T
A一1)B
T
=O,即 (A
T
A一1)BB
T
=O. 因为B≠O,所以BB
T
≠O.故C
T
C=E一BA
T
一AB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/6GV4777K
0
考研数学二
相关试题推荐
设f(x)在(a,+∞)内可导,求证:(Ⅰ)若x0∈(a,+∞),f’(x)≥α>0(x>x0),则=+∞;(Ⅱ)若=A>0,则=+∞.
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
求函数y=(x∈(0,+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10).①求r(α1,α2,α3,α4,α5).②求一个最大线性无关组,并且把其余向量用它线性表示.
求此齐次方程组的一个基础解系和通解.
设α1,α2……αn为n个线性无关的n维列向量,β1,β2,…,βn为任意n个n维列向量。证明:α1,α2……αn可由β1β2……βn线性表示的充要条件是β1β2……βn线性无关。
设f(χ)在(a,b)上有定义,c∈(a,b),又f(χ)在(a,b)\{c}连续,c为f(χ)的第一类间断点.问f(χ)在(a,b)是否存在原函数?为什么?
随机试题
考生文件夹下存在一个数据库文件“samp2.accclb”,里面已经设计好两个表对象住宿登记表“tA”和住房信息表“tB”,其中“tA”和“tB”表中“房间号”的前两位为楼号。试按以下要求完成设计:(1)创建一个查询,查找楼号为“01”的客人记录
风湿热的一般表现中不包括
属于胃肠动力变化而影响药物吸收的是
痰蒙心神证的表现应除外哪项()
链斗式挖泥船顺流施工时其尾锚抛设应()。
江老师十分注重自我学习,却经常不参加学校的校本研修活动。江老师的行为()
2016年6月下旬,英国举行了脱欧公投,“脱欧”是指脱离()。
马克思主义是科学,从根本上说在于它()。
关于法律权利与法律义务的关系,正确的观点有
Childrengoingtoschoolmusthaveachanceto_____excessphysicalenergy;childrenevenmorethanadultsrequireandenjoyphys
最新回复
(
0
)