首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组a1,a21,…,as+1(s>1)线性无关,βi=ai+tai+1,i=1,2,…,s证明:向量组β1,β2,…,βs线性无关.
已知向量组a1,a21,…,as+1(s>1)线性无关,βi=ai+tai+1,i=1,2,…,s证明:向量组β1,β2,…,βs线性无关.
admin
2021-07-27
93
问题
已知向量组a
1
,a
2
1,…,a
s+1
(s>1)线性无关,β
i
=a
i
+ta
i+1
,i=1,2,…,s证明:向量组β
1
,β
2
,…,β
s
线性无关.
选项
答案
设存在常数k
1
,k
2
,…,k
s
,使得k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0成立,即k
1
(α
1
+tα
2
)+k
2
(α
2
+tα
3
)+…+k
s
(α
s
+tα
s+1
)=k
1
α
1
+(k
1
t+k
2
)α
2
+(k
2
t+k
3
)α
3
+…+(k
s-1
t+k
s
)α
s
+k
s
tα
s+1
=0.因α
1
,α
2
,…,α
s+1
线性无关,故[*]得唯一解k
1
=k
2
=…=k
s
=0,故β
1
,β
2
,…,β
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Qy4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
证明:当x>0时,x2>(1+x)ln2(1+x).
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设α1,α2,…,αs均为n维列向量,A是m×n,矩阵,则下列选项中正确的是()
向量组α1,α2,…,αs线性无关的充分条件是
设非齐次线性方程组Ax=b有两个不同解β1和β2,其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Ax=b的通解为
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2,求实数a的值;
随机试题
Thebiggestsuccessofthefossilfuelindustry’sdecades-longcampaigntopushdoubtaboutclimatescienceisthatitforcedth
研究和学习行政管理学的根本方法是()
患者,女,31岁。5天前因劳累出现左侧下后牙龈胀痛,进食吞咽时加重,昨日起出现局部自发性跳痛,面部肿胀,张口受限,伴发热。检查:左侧颊部肿胀,局部皮温增高,压痛明显,局限于咬肌前缘处,并有凹陷性水肿;张口度约两指,左下颌第三磨牙近中低位阻生,牙龈瓣覆盖其上
下列不是基本建设新增固定资产的内容的是()
确定计算监理费的基数是采用( )的关键。
期货交易的主要特点有()。
A公司是一家以商品批发为主的有限责任公司,设立该公司的法定注册资本最低限额是人民币( )万元。
级数收敛,则p的范围为__________.
Variablessuchasindividualandcorporatebehavior______nearlyimpossibleforeconomiststoforecasteconomictrendswithpre
Whichofthefollowingsentencesexpressesprobability?
最新回复
(
0
)