首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
admin
2018-01-23
74
问题
设α是n维单位列向量,A=E-αα
T
.证明:r(A)<n.
选项
答案
A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+αα
T
.αα
T
,因为α为单位列向量, 所以α
T
α=1,于是A
2
=A.由A(E-A)=O得r(A)+r(E-A)≤n,又由r(A)+r(E-A)≥r[A+(E-A)]=r(E)=n,得r(A)+r(E-A)=n.因为E-A=αα
T
≠O,所以r(E-A)=r(αα
T
)=r(α)=1,故r(A)=n-1<n.
解析
转载请注明原文地址:https://kaotiyun.com/show/6fX4777K
0
考研数学三
相关试题推荐
设行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,试证明D能被13整除.
设3阶方阵A、B满足A2B—A—B=E.其中E为3阶单位矩阵,若,则∣B∣=_______
设a=(1,0,一1)T,矩阵A=aaT,n为正整数,a为常数,则∣aE一An∣=_______.
设(x0,y0)是抛物线y=ax2+hx+c上的一点.若在该点的切线过原点,则系数应满足的关系是__________.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别为p1=18一2Q1,p2=12一Q2其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨)并且该企业生产这
设函数f(x)在[0,+∞)上可导,f(0)=0,且,证明:对(I)中的a,存在ξ∈(0,a),使得
设二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值.用正交变换将二次型f化为标准形,并写出所用正交变换;
设A是3阶矩阵,有特征值λ1=1,λ2=一1,λ3=2.A*是A的伴随矩阵,E是3阶单位矩阵,则=___________.
已知A=,求A的特征值,并讨论A可否相似对角化.
随机试题
根据《建设部关于修改(建筑工程施工许可办法)决定》,对于未取得施工许可证或者为规避办理施工许可证将工程项目分解后擅自施工的,可以实施的行政处罚包括()。
鼻咽血管纤维瘤为鼻咽部最常见良性肿瘤,好发于40~50岁中年男性。
A.温胆汤B.归脾汤C.安神定志丸D.丹栀逍遥散不寐多梦,易于惊醒,胆怯心悸,遇事善惊,神疲体倦,自汗少气,舌淡,脉细弱。治疗宜选
患者男性,24岁。反复发作性咳嗽、喘息10年余,再发加重3h。查体见意识模糊,口唇发绀,双肺呼吸音明显减低,未闻及干湿啰音,心率128/min,可触及奇脉。为进一步明确诊断及判断病情程度最有意义的检查是
最常发生动脉粥样硬化的血管是
A.溶液型B.胶体溶液型C.固体分散型D.气体分散型E.微粒分散型纳米粒属于
下列属于账户贷方登记的内容有()。
在18世纪的英国画家中,擅长表现“社会道德题材”,对社会不公正现象进行深刻揭露和辛辣讽刺的是()。
如果某些病原体突破了第一道和第二道防线,即进入人体并生长繁殖,引起感染。有的有症状,就是患病;有的没有症状,称为“隐性感染”。不论是哪一种情况,机体都经历了一次与病原体斗争的过程,这种专门针对某一种病原体(抗原)的识别和杀灭作用为特异性免疫。譬如得过伤寒病
爱德华个人偏好量表的设计采用了()
最新回复
(
0
)