首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
admin
2018-05-21
29
问题
设α
1
,α
2
,…,α
n
为n个n维向量,证明:α
1
,α
2
,…,α
n
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,…,α
n
线性表示.
选项
答案
设α
1
,α
2
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,…,α
n
线性表示. 反之,设任一n维向量总可由α
1
,α
2
,…,α
n
线性表示, 取e
1
[*] 则e
1
,e
2
,…,e
n
可由α
1
,α
2
,…,α
n
线性表示,故α
1
,α
2
,…,α
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以α
1
,α
2
,…,α
n
的秩一定为n,即α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/6pr4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,在(a,b)内可导且f(A)≠f(B),试证明存在η,ξ∈(a,b),使得
已知(1,一1,0)T是二次型xTAx=αx12+x32一2x1x2+2x1x3+2bx2x3的矩阵A的特征向量,利用正交变换化二次型为标准形,并写出所用的正交变换和对应的正交矩阵。
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设物体在高空中垂直下落,初速度为零,下落过程中所受空气阻力与下落速度的平方成正比,阻力系数k>0。证明下落速度不会超过
已知向量a,b相互平行但方向相反,且|a|>|b|>0,则必有()
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明必存在ξ,η∈(a,b),使得eη—ξ[f(η)+f’(η)]=1.
设函数f(x)在[0,+∞)内二阶可导,且f(0)=f’(0)=0,并当x>0时满足xf"(x)+3x[f’(x)]2≤1一e—x.证明当x>0时,f(x)<x2.
设二次型f(x1,x2,x3)=xTAx=x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,求k的取值范围.
设矩阵A=,已知A的特征值之和为4,且某个特征值为2.求a,b的值。
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求正交矩阵Q
随机试题
排水是排除矿坑涌水所采取的方法和设施的总称。关于露天采场排水量计算的说法中正确的是()。
患儿男性,2岁。生后曾接种卡介苗,本次因患肺炎入院,入院后行结核菌素(PPD)试验。结核菌素试验出现假阴性的情况有
28岁已婚妇女,停经42日,下腹剧痛2小时。检查腹部移动性浊音(+)。妇科检查宫颈举痛(+),阴道后穹隆饱满,子宫漂浮感,附件区压痛明显。下列哪项无助于协助本病的诊断
治疗小便热涩刺痛,尿色深红,或夹有血块,小腹疼痛者,应选用
A.右归丸B.固本止崩汤C.金匮肾气丸D.固冲汤E.举元煎
青山公司是一家有限责任公司,从事建筑材料买卖,公司注册资本为人民币100万元。甲、乙、丙、丁、戊是青山公司股东,认缴出资额分别为60万、20万、10万、5万、5万,出资比例为60%、20%、10%、5%、5%。下列说法正确的是()。
甲公司以境内、境外全部生产经营活动有关的研究开发费用总额、销售收入总额、高新技术产品收入等指标申请并经认定为高新技术企业,属于增值税一般纳税人。2014年度相关生产经营资料如下:(1)甲公司坐落在某市区,全年实际占用土地面积共计500000平方米,其
黄山风景区的核心景区是()。
设D是xOy平面上以(1,1),(一1,1),(一1,一1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(xy+cosxsiny)dσ等于().
合同可以变更,但是当事人对合同变更的内容约定不明确的,推定为(31)。
最新回复
(
0
)