首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
admin
2018-05-21
71
问题
设α
1
,α
2
,…,α
n
为n个n维向量,证明:α
1
,α
2
,…,α
n
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,…,α
n
线性表示.
选项
答案
设α
1
,α
2
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,…,α
n
线性表示. 反之,设任一n维向量总可由α
1
,α
2
,…,α
n
线性表示, 取e
1
[*] 则e
1
,e
2
,…,e
n
可由α
1
,α
2
,…,α
n
线性表示,故α
1
,α
2
,…,α
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以α
1
,α
2
,…,α
n
的秩一定为n,即α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/6pr4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,在(a,b)内可导且f(A)≠f(B),试证明存在η,ξ∈(a,b),使得
线性方程组Ax=b经初等变换其增广矩阵化为方程组无解,则a=()
设α1,α2,α3,α4,α5都是四维列向量,A=(α1,α2,α3,α4),非齐次线性方程组Ax=α5,有通解kξ+η=k(1,一1,2,0)T+(2,1,0,1)T,则下列关系式中不正确的是()
设物体在高空中垂直下落,初速度为零,下落过程中所受空气阻力与下落速度的平方成正比,阻力系数k>0。证明下落速度不会超过
已知a,b为非零向量,且a⊥b,则必有()
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明必存在ξ,η∈(a,b),使得eη—ξ[f(η)+f’(η)]=1.
设=1,且f"(x)>0,证明f(x)>x(x≠0).
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ3,…,Aξn一1=ξn,Aξn=0,且ξn≠0.(Ⅰ)证明ξ1,ξ2,…,ξn线性无关;(Ⅱ)求Ax=0的通解;(Ⅲ)求出A的全部特征值和特征向量,并证明A不可
设矩阵A=,已知A的特征值之和为4,且某个特征值为2.求a,b的值。
随机试题
Excel中A1单元格的内容是字符串“ABC”,A2单元格的内容是字符串“DEF”,为合并A1和A2单元格中的字符串得到“ABCDEF”,正确的字符连接运算公式是______。
第一次将乙醚吸入麻醉用于临床是在
闭路电视监控系统摄像机室内安装宜距地面2.5~5m。()
轻质隔墙工程质量验收,同一品种的轻质隔墙工程每()间应划分为一个检验批,不足的也应划分为一个检验批。
简述制定具体人力资源管理制度的程序。
让幼儿轮流担任小老师、小指挥,这是满足了幼儿()
“常在河边走,哪有不湿鞋”。搞财会工作的,都免不了有或多或少的经济问题,特别是在当前商品经济大潮下,更是如此。以下哪项如果是真的,最有力地削弱了上述断定?()
如果飞行员严格遵守操作规程,并且飞机在起飞前经过严格的例行技术检验,那么,飞机就不会失事,除非出现例如劫机这样的特殊意外。这架波音747在金沙岛上空失事。如果上述断定是真的,则以下哪项也一定是真的?
FTP协议是Internet常用的应用层协议,传输层使用(63)协议提供服务。默认时,作为服务器一方的进程,通过监听(64)端口得知是否有服务请求。(64)
Everyonehasclimbeduptothetopofthemountain,_______?
最新回复
(
0
)