首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是区间(一π,π)内过的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y’’+y+x=0。求函数y(x)的表达式。
设y=y(x)是区间(一π,π)内过的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y’’+y+x=0。求函数y(x)的表达式。
admin
2020-03-16
109
问题
设y=y(x)是区间(一π,π)内过
的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y’’+y+x=0。求函数y(x)的表达式。
选项
答案
由题意,当一π<x<0时,法线均过原点,所以有[*],得y
2
=一x
2
+C。又[*],代入y
2
=一x
2
+C得C=π
2
,从而有x
2
+y
2
=π
2
。 当0≤x<π时,y’’+y+x=0,得其对应齐次微分方程y’’+y=0的通解为 y
*
=C
1
cosx+C
2
sinx。 设其特解为y
1
=Ax+B,则有0+Ax+B+x=0,得A=一1,B=0,故y
1
=一x是方程的特 解,因此y’’+y+x=0的通解为y=C
1
cosx+C
2
sinx一x。 因为y=y(x)是(一π,π)内的光滑曲线,故y在x=0处连续且可导,所以由已知得 y|
x=0
=π,y’|
x=0
=0, 故得C
1
=π,C
2
=1,所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6z84777K
0
考研数学二
相关试题推荐
(2002年试题,五)已知函数f(x)在(0,+∞)内可导f(x)>0,96,且满足求f(x).
(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
[*]
(99年)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an==∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在.
设非负函数y=y(x)(x≥0)满足微分方程xy"一y’+=0.当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
[2003年]设位于第一象限的曲线y=f(x)过点(√2,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.已知曲线y=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s.
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求Bx=0的通解。
设A,B均是n阶矩阵,且r(A)+r(B)<n,证明A,B有公共的特征向量.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
随机试题
嗜肺军团菌为革兰________菌,侵入人体后可寄生在________细胞内。
设X~B(10,),则=________.
(2013年第22题)甲状腺激素的化学本质是
A.药品生产、经营企业和医疗卫生机构发现群体不良反应B.进口药品自首次获准进口之日起满5年C.进口药品自首次获准进口之日起5年内D.代理经营该进口药品的单位应于不良反应发现之日起1个月内报告国家药品不良反应监测中心E.代理经营该进口药品的
()是生产中“预防为主”的根本体现,也是安全生产的最高境界。
勘察阶段监理的工作内容有()。
应在“应付职工薪酬”账户贷方登记的是()。
制度经济学认为,制度创新的主体有政府、团体、个人三个层次。其中政府处于核心地位,它是制度的最大供给者。政府制度创新通常是成本交易最低的创新形式,因为政府在制度创新中具有强制优势、组织优势、超脱优势、效率优势。政府是一种最为关键的生产性资源,制度创新是政府的
飞机起飞与降落时,应(),最为有利于安全保障。
甲、乙签订买卖合同,甲向乙支付全部价款,约定乙应于2006年12月1日前交货。11月20日,甲得知乙近期将出国,并已将全部库存货物及其他财产卖给他人。于是,甲要求乙承担违约责任,乙拒绝。根据上述情形,下列表述正确的是
最新回复
(
0
)