首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为( ).
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为( ).
admin
2021-01-14
51
问题
已知四维列向量α
1
,α
2
,α
3
线性无关,若向量β
i
(i=1,2,3,4)是非零向量且与向量α
1
,α
2
,α
3
均正交,则向量组β
1
,β
2
,β
3
,β
4
的秩为( ).
选项
A、1
B、2
C、3
D、4
答案
A
解析
设α
i
=(α
j1
,α
j2
,α
j3
,α
j4
)
T
(j=1,2,3),由已知条件有
β
i
T
α
j
=0(i=1,2,3,4;ji=1,2,3),
即β
i
(i=1,2,3,4)为方程组
由于α
1
,α
2
,α
3
,α
4
线性无关,所以方程组系数矩阵的秩为3,所以其基础解系含一个解向量,从而向量组β
1
,β
2
,β
3
,β
4
的秩为1,选(A).
转载请注明原文地址:https://kaotiyun.com/show/7D84777K
0
考研数学二
相关试题推荐
已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex。求f(x)的表达式;
[2002年]设函数f(x)在x=0的某个邻域内具有二阶连续导数,且f(0)≠0,f'(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
(2005年)确定常数α,使向量组α1=(1.1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表
求曲线y=的上凸区间.
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何
设f(x)具有一阶连续导数,f(0)=0,且表达式[xy(1+y)一f(x)y]dx+[f(x)+x2y]dy为某二元函数u(x,y)的全微分.求u(x,y)的一般表达式.
设三元二次型χ12+χ22+5χ32+2tχ1χ2-2χ1χ3+4χ2χ3是正定二次型,则t∈_______.
设则(A-1)*=________.
设则F(x)()
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
随机试题
“古之天下,亦今之天下,今之天下,亦古之天下”是()。
建设项目的竣工验收一般应符合以下条件:();建设项目的技术资料已经按照要求整理归档,并可方便查阅。
下面关于逆城市化的叙述,正确的是()。
()于2018年12月21日制定发布了《旅游市场黑名单管理办法(试行)》。
代理人知道被委托代理的事项违法仍然进行代理活动的,或者被代理人知道代理人的代理行为违法不表示反对的()。
在配置管理中,用于管理当前基线和控制对基线的变更的配置库是()。
某企业需要采用甲、乙、丙三种原材料生产Ⅰ、Ⅱ两种产品。生产两种产品所需原材料数量、单位产品可获得利润以及企业现有原材料数如下表所示:则公司可以获得的最大利润是(35)万元。取得最大利润时,原材料(36)尚有剩余。(35)
Wearetryingourbest______thepoorchildrenwholosttheirparents.
Theword"freedom"formanyblackAmericansisinextricablylinkedwiththeword"slavery."Whileithas148years【M1】______si
HowtoCommunicateEffectivelyGeneralinformationoncommunication—It’saskillyoucanlearn.—Communicationsison
最新回复
(
0
)