首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶反对称矩阵. 证明:对任何n维列向量α,恒有αTAα=0.
设A是n阶反对称矩阵. 证明:对任何n维列向量α,恒有αTAα=0.
admin
2017-06-14
25
问题
设A是n阶反对称矩阵.
证明:对任何n维列向量α,恒有α
T
Aα=0.
选项
答案
因为α
T
Aα是1×1矩阵,是一个数,故 α
T
Aα=(α
T
Aα)
T
=α
T
A
T
(α
T
)
T
=-α
T
Aα. 所以恒有α
T
Aα=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Zu4777K
0
考研数学一
相关试题推荐
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3),求P-1AP.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
(2003年试题,三)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D(见图1一3—5).求D的面积A;
(2000年试题,一)设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_____________.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
随机试题
特大型工件划线的拉线和吊线法只需要()次吊装、找正,就能完成整个工件的划线。
元朝规定诉讼应当逐级进行,原则上不能够直接向中央审判机关控告;以下情形不存在违反规定进行越级诉讼的是()。
GB50319—2000《建设工程监理规范》是开展工程监理活动的纲领性文件,当编制好建设工程规划后,管理单位应( )。
有限责任公司型股权投资基金的投资者一般按()进行收益分配。
经营所得的适用税率是()。
商业秘密是指不为公众所知悉、能为权利人带来经济利益,具有实用性并经权利人采取保密措施的技术信息和经营信息。根据上述定义,下列属于商业秘密的是:
【德冒福斯事件】南京大学2006年世界近现代史真题;2008年历史学统考真题;河北师范大学2013年世界史真题
Happyhoursarenotnecessarilyhappy,nordotheylastforanhour,buttheyhavebecomeapartoftheritualoftheofficewor
TheU.S.spaceagency,NASA,isplanningtolaunchasatellitethatscientistshopewillanswerfundamentalquestionsaboutthe
SupposeV1=<R,+>,V2=<R,.>,whereRisthesetofrealnumbers,+and.arerespectivelyadditionandmultiplication.Letf:R→Ra
最新回复
(
0
)