求y"+a2y=8cosbx的通解,其中a>0,b>0为常数;

admin2019-02-20  44

问题 求y"+a2y=8cosbx的通解,其中a>0,b>0为常数;

选项

答案由于对应齐次微分方程的特征根为±ai,所以其通解为[*]=C1cosax+C2sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosba+Bsinba,将其代入原方程可得 [*] 所以通解为[*]其中C1与C2是两个任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程可得 A=0.[*] 所以原方程的通解为y(x)=[*]xsinax+C1cosax+C2sinax,其中C1与C2是两个任意常数.

解析
转载请注明原文地址:https://kaotiyun.com/show/8QP4777K
0

最新回复(0)