首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f=XTAX,g=XTBX是两个n元正定二次型,则下列未必是正定二次型的是( )
设f=XTAX,g=XTBX是两个n元正定二次型,则下列未必是正定二次型的是( )
admin
2016-03-05
62
问题
设f=X
T
AX,g=X
T
BX是两个n元正定二次型,则下列未必是正定二次型的是( )
选项
A、X
T
(A+B)X
B、X
T
A
一1
X
C、X
T
B
一1
X
D、X
T
ABX.
答案
D
解析
因为f是正定二次型,A是n阶正定阵,所以A的n个特征值λ
1
,λ
2
,…,λ
n
都大于零,{A|>0,设AP
j
=λ
j
P
j
,则
,A
一1
的n个特征值
(j=1,2,…,n)必都大于零,这说明A
一1
为正定阵,X
T
A
一1
X为正定二定型.同理,X
T
B
一1
X为正定二次型,对任意n维非零列向量X都有X
T
(A+B)X=X
T
AX+X
T
BX>0,这说明X
T
(A+B)X为正定二次型.由于两个同阶对称阵的乘积未必为对称阵,所以X
T
ABX未必为正定二次型.
转载请注明原文地址:https://kaotiyun.com/show/8a34777K
0
考研数学二
相关试题推荐
设A是3阶方阵,λ1=1,λ2=-2,λ3=-1为A的特征值,对应的特征向量依次为a1,a2,a3,P=(3a2,2a3,-a1),则P-1(A*+E)P=()
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).求幂级数的和函数S(x)满足的一阶微分方程,并求S(x).
设A3×3是秩为1的实对称矩阵,λ1=2是A的一个特征值,其对应的特征向量为a1=(-1,1,1)T,则方程组Ax=0的基础解系为()
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求矩阵A;
设A,B均为4阶矩阵,它们的伴随矩阵分别为A*与B*,且r(A)=3,r(B)=4,则方程组A*B*x=0()
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
设函数f(x)在[a,b]上连续,且f(x)>0,则方程∫axf(t)dt+∫bx=0在(a,b)内的实根个数为().
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设函数y=y(x)由方程组所确定,试求t=0
已知点A(2,-1,7)沿向量a=(8,9,-12)的方向得线段AB,且|AB|=34,则点B坐标为________.
随机试题
恩格斯在谈到巴尔扎克的《人间喜剧》时说,“从这里所学到的东西,比从当时所有职业的历史学家、经济学家和统计学家那里学到的全部东西还要多”。这说明了艺术具有______功能。()
男性,55岁,2周前体检发现左肺上叶肿块,直径约3cm,边界较清楚。入院手术切除后病理诊断为结核瘤。肿块中央部分为
男性,32岁,既往有胃病史。近一周来常感上腹部不适,4小时前突发上腹部剧烈疼痛,伴有恶心、呕吐。查体:腹部压痛、肌紧张,肝浊音缩小。X线检查可见膈下游离气体。首先考虑
1998年试题【试题要求】1.任务描述图示木夹板门(图2.3—1)按指定的剖面线位置及剖视方向,绘出构造节点详图,包括与240mm砖墙及过梁的关系,要求构造合理。2.设计任务与构造要求(1)图示木夹板门,中悬亮窗,下部有百叶,双面胶合板门。(
宋代东京汴梁城的特点是()。
根据第五次全国人口普查的结果,我国男性占总人口的51.63%,女性占总人口的48.37%,那么人口的性别比为( )。
资料(一)威达电子电工股份有限公司是2005年在深交所上市的公司,主要从事磁性材料、半导体材料、电动机、电热设备工业自动化装置、电子电工产品制造设备的研发、生产和销售,母公司为科威股份有限公司(以下简称科威公司)。威达股份于2014年1
约公元前2070年,()建立了我国第一个奴隶制王朝夏朝。
下列情形构成挪用公款罪的是()。
Arapidmeansoflong-distancetransportationbecameanecessityfortheUnitedStatesassettlementspreadfartherwestward.F
最新回复
(
0
)