首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2021-11-09
52
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即 (k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, 等式两边左乘A,得(k+k
1
+…+k
t
)Aβ=0[*]k+k
1
+…+k
t
=0,则k
1
α
1
+…+k
t
α
t
=0. 由α
1
,α
2
,…,α
t
线性无关,得k
1
=…=k
t
=0,k=0,所以β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/8vy4777K
0
考研数学二
相关试题推荐
下列说法中正确的是().
设y(x)为微分方程y"-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则=_________.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0﹥0),若导弹方向始终指向飞机,且速度大小为2v.导弹运行方程。
设f(x)为连续函数,计算,其中D是由y=x3,y=1,x=-1围成的区域。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设二次型f(x1,x2,x3)=XTAX=x12+5x22+x32-4x1x2+2x2x3,则对任意X≠0,均有()
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2),证明:当n为奇数时,(x,f(x0))为拐点.
设A=(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
计算sinx2cosy2dxdy,其中D:x2+y2≤a2(x≥0,y≥0).
随机试题
关于心室肌细胞动作电位离子基础的叙述,哪一项是错误的
A.加大剂量注射B.换用其他种类对比剂C.静脉或肌内注射盐酸苯海拉明20mg,或肌内注射异丙嗪25mgD.皮下注射0.1%肾上腺素0.5~1.0ml,或氨茶碱0.25mg加10%葡萄糖10mlE.暂停或减慢注射,必要时口服异丙嗪25
不作为预防MODS基本要点的是
患者女,20岁。查体:血红蛋白90g/L,红细胞体积小,血清铁明显下降,诊断为缺铁性贫血。为了加强铁的吸收,可以同时进食
审查代订合同的代理人的资格应注意以下几点()。
遗嘱继承
贷款的担保措施能够确保贷款得以足额偿还给银行。()
组织流水施工时,如果按专业成立专业工作队,则其特点有()。
细水雾灭火系统管道冲洗合格后,应进行压力试验,下列说法正确的是()。
关于存货投资,说法正确的是( )。
最新回复
(
0
)