首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2021-11-09
76
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即 (k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, 等式两边左乘A,得(k+k
1
+…+k
t
)Aβ=0[*]k+k
1
+…+k
t
=0,则k
1
α
1
+…+k
t
α
t
=0. 由α
1
,α
2
,…,α
t
线性无关,得k
1
=…=k
t
=0,k=0,所以β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/8vy4777K
0
考研数学二
相关试题推荐
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明:
曲线的斜渐近线为____________.
设f(x)二阶连续可导,且,f"(0)=4,则=_________.
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤.
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤.证明:f(x)=0,x∈[0,1].
函数f(x)在x=1处可导的充分必要条件是().
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.确定a,使S1+S2达到最小,并求出最小值。
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值。
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
A、0.B、-∞.C、+∞.D、不存在但也不是∞.D因为et=+∞,et=0,故要分别考察左、右极限.由于因此应选D.
随机试题
下列药物中,既能活血,又能行气,且止痛作用强的药物是()(2009年第35题)
Thefruit________nice,but________terrible.
经济全球化对发展中国家有何影响?
A.完全肯定性诊断B.不完全肯定性诊断C.描述性诊断D.阴性诊断E.否定诊断创伤后形成的肉芽组织属于
引起呼气性呼吸困难最常见的病因是
关于民族自治地方的自治权,下列哪些说法是正确的?(卷一/2010年第63题)
下列不属于上市客户的法人治理关注点的是()。
关于贷款的分类,下列说法错误的是()
以下说法不正确的是:
InthemonthofSeptember,inBritain,youmayseelargenumbersofbirds(1)_____onroofsandtelegraphwires.Thesebirdsare
最新回复
(
0
)