首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 求矩阵A的特征值。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 求矩阵A的特征值。
admin
2018-12-29
45
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
求矩阵A的特征值。
选项
答案
由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*], 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
—1
AP
1
=B,因此矩阵A与B相似,则 |λE—B|=[*]=(λ—1)
2
(λ—4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。
解析
转载请注明原文地址:https://kaotiyun.com/show/8xM4777K
0
考研数学一
相关试题推荐
已知问a,b取何值时,向量组α1,α2,α3与β1,β2等价?
A是3阶实对称矩阵,其主对角线上元素都是0,并且α=(1,2,-1)T满足Aα=2α.求正交矩阵P使P-1AP可相似对角化.
设是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).求A的特征值.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(Ⅰ)与(Ⅱ)的公共解.
已知矩阵与对角矩阵相似,求An.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求矩阵A;
随机试题
地陪带领旅游者购物时应做好的工作有()。
膈()
因情志所伤引起的胃痛,和情绪关系密切,可能是下列哪种疼痛
胆汁质气质的人,其高级神经活动类型属于
某投资方案建设期为2年,建设期内每年年初投资400万元,运营期每年年末净收益为150万元。若基准收益率为12%,运营期为18年,残值为零,并已知(P/A,12%,18)=7.2497,则该投资方案的净现值和静态投资回收期分别为()。
图是探究绿色植物光合作用速率的实验示意图,装置中的碳酸氢钠溶液可维持瓶内的二氧化碳浓度。该装置放在光照适宜的20℃环境中。实验开始时,针筒的读数是0.2mL,毛细管内的水滴在位置X。30分钟后,针筒的容量需要调至0.6mL的读数,才能使水滴仍维持在X的位置
AdamSmith,writinginthe1770s,wasthefirstpersontoseetheimportanceofthedivisionoflaborandtoexplainpartofits
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求
Completethetablebelow.ChooseNOMORETHANTHREEWORDSfromReadingPassage1foreachanswer.Writeyouranswersinboxes5-
Whatisthemaintopicofthelecture?
最新回复
(
0
)