首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 求矩阵A的特征值。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 求矩阵A的特征值。
admin
2018-12-29
60
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
求矩阵A的特征值。
选项
答案
由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*], 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
—1
AP
1
=B,因此矩阵A与B相似,则 |λE—B|=[*]=(λ—1)
2
(λ—4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。
解析
转载请注明原文地址:https://kaotiyun.com/show/8xM4777K
0
考研数学一
相关试题推荐
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
求证:若向量a、b、c不共面,则向量a×b,b×c,c×a也不共面.
设是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).证明:A不相似于对角矩阵.
已知ξ1,2是方程组(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是().
设A为三阶实对称矩阵,且存在可逆矩阵若kE+A*合同于单位矩阵,求k的取值范围.
设A为三阶实对称矩阵,且存在可逆矩阵求正交变换x=Qy,化二次型f(x1,x2,x3)=xTA*x为标准形,其中A*为A的伴随矩阵;
设A为三阶实对称矩阵,且存在可逆矩阵求a,b的值;
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
随机试题
门诊病案管理系统按照流程可以分为
下列哪项属于乙类传染病?()
雨水口担负的汇水面积不应超过其集水能力,且最大间距不宜超过()m。
下列经济业务,应该填制转账凭证的是()。
期货交易所章程应当载明的事项不包括()。
乙股份有限公司当期发生的下列交易或事项中,其现金流量变动属于筹资活动产生的现金流量的有()。
张老师特别热爱教师职业,坚信自己具有做好教师的潜质,在教学中始终表现出较高的工作热情,认为无论遇到什么样的学生,只要想办法,都能教好学生。这说明张老师具有很高的()
下列关于保税区的说法错误的是()。
假设生产管理网络系统采用B/S工作方式,经常上网的用户数为150个,每用户每分钟产生8个事务处理任务,平均事务量大小为0.05MB,则这个系统需要的信息传输速率为______。
AccordingtotheAmericanAcademyofDermatology,anestimated10to50millionpeopleinthiscountryhaveanallergicreaction
最新回复
(
0
)