首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ). (2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ). (2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
admin
2019-08-23
29
问题
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:
(1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ).
(2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
选项
答案
(1)令φ(χ)=[*]f(χ),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0, 而φ′(χ)=[*][f′(χ)-2χf(χ)]且[*]≠0,故f′(ξ)=2ξf(ξ). (2)令φ(χ)=χf(χ),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在η∈(a,b),使得φ′(η)=0, 而φ′(χ)=χf′(χ)+f(χ),故ηf′(η)+f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/92A4777K
0
考研数学二
相关试题推荐
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设x与y均大于0,且x≠y,证明:
曲线r=a(1﹢cosθ)(常数a>0)在点处的曲率k=_______.
已知摆线的参数方程为其中0≤t≤2π,常数a>0.设该摆线一拱的弧长的数值等于该弧段绕z轴旋转一周所围成的旋转曲面面积的数值.求a的值.
设函数y(x)在区间[1,﹢∞)上具有一阶连续导数,且满足.求y(x).
设f(x)在区间(0,﹢∞)上连续,且严格单调增加.试求证:F(x)=在区间(0,﹢∞)上也严格单调增加.
设D={(x,y)|)},常数a>0,b>0,a≠b.求二重积分I=[(x-1)2﹢(2y﹢3)2]dσ.
设平面区域D={(x,y)|(x-1)2﹢(y-1)2≤2},I1=(x﹢y)dσ,I21=(1﹢x﹢y)dσ.则正确的是()
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
随机试题
患者女,53岁,右耳渐进性听力下降伴耳鸣1年,患者自耳鸣以来长期失眠,不伴耳痛,否认中耳炎病史,近半年月经不规律。查体双外耳道干燥通畅,鼓膜完整光锥可见。纯音测听结果示左耳平均听阈15dB,右耳自4000Hz开始高频下降,高频平均听阈50dB,为感音神经性
下列适于用冲击式粉碎机粉碎的物料是
有关铁的吸收的叙述,错误的是
女,7岁。食冷饮时左后牙感到酸痛2周,无自发痛史,检查发现颊面深龋,龋蚀范围稍广,腐质软而湿润,易挖除,但敏感。测牙髓活力同正常牙,叩(-)首次就诊时,对该患牙应做的处理为
A.氨曲南B.克拉维酸C.哌拉西林D.亚胺培南E.他唑巴坦属于青霉烷砜类抗生素的是()。
下列各项中,符合增值税专用发票开具时限规定的是( )。
《马斯特里赫特条约》
为什么是政府,而不是企业或大学为超级计算机网络的实现出资?这是因为仅仅对超级计算机网络庞大的数据管理能力来说,就有一系列被抨击的问题。没有任何一个企业或大学自身具有购买整个网络的机器的足够财力,并且没有企业或大学会在不存在配套建设整个网络的机制下为网络的某
DeconstructionInnovationsinlanguagearenevercompletelynew.Whenthewordsusedforfamiliarthingschange,orwordsfo
IthasbeenawretchedfewweeksforAmerica’scelebritybosses.AIG’sMauriceGreenberghasbeendramaticallyoustedfromthef
最新回复
(
0
)