首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 (I)证明二次型f对应的矩阵为2ααT+ββT. (II)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y2
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 (I)证明二次型f对应的矩阵为2ααT+ββT. (II)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y2
admin
2016-04-11
34
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
(I)证明二次型f对应的矩阵为2αα
T
+ββ
T
.
(II)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(I)记x=[*],由于 f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
=A321(x
1
,x
2
,x
3
)[*]] =2x
T
(αα
T
)x+x
T
(ββ
T
)x =x
T
(2αα
T
+ββ
T
)x
T
, 又2αα
T
+ββ
T
为对称矩阵,所以二次型f的矩阵为2αα
T
+ββ
T
. (Ⅱ)记矩阵A=2αα
T
+ββ
T
.由于α,β正交且为单位向量,即α
T
α=1,β
T
β=1,α
T
=β
T
α=0,所以 Aα=(2αα
T
+ββ
T
)α=2α, Aβ=(2αα+ββ)β=β, 于是λ
1
=2,λ
2
=1是矩阵A的特征值.又 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)≤2, 所以λ
3
=0是矩阵A的特征值.由于f在正交变换下的标准形中各变量平方项的系数为A的特征值,故f在正交变换下的标准形为2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/98w4777K
0
考研数学一
相关试题推荐
沿f(χ)=在χ=0处二阶导数存在,则常数a,b分别是
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形
设4阶实对称矩阵A满足A4=E,且A≠±E,则A的不同特征值的个数为()
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求a,b的值
设面密度为1的立体Ω由不等式≤z≤1表示,求Ω对直线L:x=y=z的转动惯量.
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y’|x=0=1的解为________.
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
根据题意设X1,X2,…,Xn是一个简单随机样本,因此X1,X2,…,Xn相互独立,且与总体同分布,从而可知[*]
设A、B为两随机事件,且BA,则下列结论中肯定正确的是().
随机试题
利用对称性计算下图(a)所示结构,绘制弯矩图。(各杆EI相同)
虚劳阳虚证的选方有()。
在治疗外感风寒表实证的方剂中,与麻黄相须为用,增强疗效的药物是
下列不属于显性成本的是()。
(2009年考试真题)转移支付是国家为了某种特定需要,将一部分财政资金无偿补助给企业和居民的一种再分配形式。()
甲公司以境内、境外全部生产经营活动有关的研究开发费用总额、销售收入总额、高新技术产品收入等指标申请并经认定为高新技术企业,属于增值税一般纳税人。2014年度相关生产经营资料如下:(1)甲公司坐落在某市区,全年实际占用土地面积共计500000平方米,其
病例对照研究的特点不包括()。
试述新发展阶段、新发展理念、新发展格局的科学内涵。
利用对话框提示用户输入查询条件,这样的查询属于()。
A、TheyarethemostattractivewomeninBritain.B、Theyarethemostpopularfilmstars.C、Theyarethefirstwomennewsannounc
最新回复
(
0
)