首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3,(b>0)其中A的特征值之和为1,特征值之积为-12. (1)求a,b. (2)用正交变换化f(χ1,χ2,χ3)为标准型.
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3,(b>0)其中A的特征值之和为1,特征值之积为-12. (1)求a,b. (2)用正交变换化f(χ1,χ2,χ3)为标准型.
admin
2020-03-16
85
问题
设二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX=aχ
1
2
+2χ
2
2
-2χ
3
2
+2bχ
1
χ
3
,(b>0)其中A的特征值之和为1,特征值之积为-12.
(1)求a,b.
(2)用正交变换化f(χ
1
,χ
2
,χ
3
)为标准型.
选项
答案
(1)A=[*] 由条件知,A的特征值之和为1,即a+2+(-2)=1,得a=1. 特征值之积=12,即|A|=-12,而 |A|=[*]=2(-2-b
2
) 得b=2(b>0).则A=[*] (2)|AE-A|=[*]=(λ-2)
2
(λ+3), 得A的特征值为2(二重)和-3(一重). 对特征值2求两个单位正交的特征向量,即(A-2E)X=0的非零解. A-2E=[*] 得(A-2E)X=0的同解方程组χ
1
-2χ
3
=0,求出基础解系η
1
=(0,1,0)
T
,η
3
=(2,0,1)
T
.它们正交,单位化:α
1
=η
1
,α
2
=[*] 求-3的一个单位特征向量: A+3E=[*] (A+3E)X=0的同解方程组[*] 得一个η
1
=(1,0,-2)
T
,单位化得α
3
=[*] 作正交矩阵Q=(α
1
,α
2
,α
3
),则 Q
T
AQ=[*] 作正交变换X=QY则它把f化为Y的二次型f=2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/9I84777K
0
考研数学二
相关试题推荐
设A,B为n阶矩阵,P=证明:当P可逆时,Q也可逆.
设四元齐次线性方程组(Ⅰ)为且已知另一个四元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与方程组(Ⅱ)有非零
[2002年]设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量a是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是().
[2005年]设D={(x,y)∣x2+y2≤√2,x≥0,y≥0),[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
已知(1,一1,1,一1)T是线性方程组的一个解,试求(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(2)该方程组满足x2=x3的全部分.
当x→0时,与xm是同阶无穷小量,试求常数m.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
设可微函数f(χ,y)在点(χ0,y0)处取得极小值,则下列结论正确的是().
设f(x)在(-∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
随机试题
Theappealofadvertisingtobuyingmotivescanhavebothnegativeandpositiveeffects.Consumersmaybeconvincedtobuyapro
参考了国内外学者的研究成果,把学前儿童的情绪行为异常分为情绪障碍、品行障碍、正常心理机能发展迟缓而产生的损害、不良习惯这四个方面的人是()
红、橙、黄色使人产生暖的感觉,绿、青、蓝色使人产生冷的感觉,这种现象是()
下列哪种情况行融合后,对颈椎旋转功能影响最大
患儿,1岁,因食欲差,母乳少,以米糊、稀饭喂养,未添加其他辅食,诊断为营养不良Ⅰ度。最先出现的症状是
由于房地产是不动产,完成房地产居间、代理业务必不可少的环节是()。
梁和板为典型的()构件。
教师职业道德养成的基本原则有()。
期末结转后无余额的账户有()。
有如下类定义:classBase{public:inta;protected:intb;private:intc;};classDe
最新回复
(
0
)