首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______
admin
2020-03-10
101
问题
设三阶方阵A=[A
1
,A
2
,A
3
],其中A
i
(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A
1
-2A
2
,2A
2
+3A
3
,-3A
3
+2A
1
|=_______
选项
答案
12
解析
由(-A
1
-2A
2
,2A
2
+3A
3
,-3A
3
+2A
1
)=(A
1
,A
2
,A
3
)
得|-A
1
-2A
2
,2A
2
+3A
3
,-3A
3
+2A
1
|=|A
1
,A
2
,A
3
|.
=12.
转载请注明原文地址:https://kaotiyun.com/show/9ZA4777K
0
考研数学二
相关试题推荐
行列式Dn==________。
设A为正交矩阵,证明:若|A|=—1,则|E+A|=0。
设A为三阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第三行得到单位矩阵,记P1=,则A=()
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:(M1,—M2,…,(—1)n—1Mn)是方程组的一个解向量。
[20l0年]设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
[2007年]如图1.3.2.2所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是(
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
设3阶方阵A的特征值为2,-1,0,对应的特征向量分别为α1,α2,α3,若B=A3-2A2+4E,试求B-1的特征值与特征向量.
设f(x)=求f(x)的间断点并判定其类型.
求常数k的取值范围,使得f(a)=kln(1+x)—arctanx当x>0时单调增加.
随机试题
_______客户具有高度的满意度,但同时转换度也非常高,他们对价格和促销非常敏感。
“肾衰竭指数”指
杜仲与续断的共同功效是
患儿体温38.7℃,可采用的最佳降温方法是青霉素皮试阴性后,肌内注射应选择的最佳部位是
下列各项中关于账簿的选择,说法正确的是()。
以下说法不正确的是( )。
根据《行政诉讼法》的相关规定,下列说法错误的是:
在一项关于求职人员的调查中,2/5的人承认至少有一些不诚实。然而,这项调查可能低估了有不诚实行为的求职人员的比例,因为______。以下哪一选择能最好地完成上面的短文?()
查询包括【】、删除查询、生成表查询和选择查询4种。
CosmeticSurgerySurgerythatcanimprovethewayapersonlooksisbecomingmoreandmorepopularintheUnitedStates.Th
最新回复
(
0
)