首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设函数f(x)在[a,b]上有定义,在(a,b)内可导,则( ).
[2002年] 设函数f(x)在[a,b]上有定义,在(a,b)内可导,则( ).
admin
2019-03-30
96
问题
[2002年] 设函数f(x)在[a,b]上有定义,在(a,b)内可导,则( ).
选项
A、当f(a)f(b)<0时,存在ξ∈(a,b),使f(ξ)=0
B、对任何ξ∈(a,b),有[*]
C、当f(a)=f(b)时,存在ξ∈(a,b),使f’(ξ)=0
D、存在ξ∈(a,b),使f(b)-f(a)=f’(ξ)(b-a)
答案
B
解析
仅(B)入选.因对于任取的ξ∈(a,b),f(x)在x=ξ处可导,故f(x)在=ξ处连续,则
对于其他三个选项,因它们需要“f(x)在[a,b]上连续"这个条件,而题设条件“f(x)在(a,b)内可导”并不能保证f(x)在两端点a,b连续,故(A)、(C)、(D)不正确.
若将函数f(x)“在闭区间[a,b]上有定义”改为“在[a,b]上连续”,则四选项都对.
转载请注明原文地址:https://kaotiyun.com/show/9aP4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=xTAx在正交变换x=Q),下的标准形为y12+y22,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A是m×n矩阵,E是n阶单位阵,矩阵B=一aE+ATA是正定阵,则a的取值范围是________。
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
下列命题中①如果矩阵AB=E,则A可逆且A—1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
设曲线y=f(x)与y=x2—x在点(1,0)处有公共的切线,则=________。
求微分方程xy’+(1-x)y=e2x(x>0)满足y(x)=1的特解.
求曲线y=cosx与x轴围成的区域绕x轴、y轴形成的几何体体积.
(2004年)设有以下命题:则以上命题中正确的是()
随机试题
下列药材不需要“发汗”的有
提出有限理性决策模式的代表人物是()
管理者在进行经营决策时扮演的角色是()
Howeverimportantwemayregardschoollifetobe,itcannotbedeniedthatchildrenspendmoretimeathomethanintheclassro
女性,42岁,因“急性重症胰腺炎”入院。2天来经保守治疗,发热及腹痛略好转,但逐渐出现呼吸困难,予面罩吸氧(氧流量6L/min)后血气分析显示:pH7.52,PaO263mmHg,PaCO224mmHg。查体:体温38.5℃,呼吸30次/分,血压1
二级价格歧视是指将消费者分为具有不同需求价格弹性的两组或更多组,分别对各组消费者收取不同的价格。()
作为内部证据的会计记录,在()情况下可靠性较强。
TrafficisaperennialprobleminHongKong.Overtheyearsmanysuggestionshavebeen【C1】______toeasetransportdifficulties.
Poets,songwritersandpoliticianshatetheidea,butfordecadesopinion-pollevidencehasbeenclear;moneybuyshappinessand
Globalwarmingiscausingmorethan300,000deathsandabout$125billionineconomiclosseseachyear,accordingtoareport
最新回复
(
0
)