首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(U,V)的联合概率密度为 f(u,v)=. 求证:(Ⅰ)X=U+V服从正态分布; (Ⅱ)Y=U2+V2服从指数分布.
设二维随机变量(U,V)的联合概率密度为 f(u,v)=. 求证:(Ⅰ)X=U+V服从正态分布; (Ⅱ)Y=U2+V2服从指数分布.
admin
2018-06-12
45
问题
设二维随机变量(U,V)的联合概率密度为
f(u,v)=
.
求证:(Ⅰ)X=U+V服从正态分布;
(Ⅱ)Y=U
2
+V
2
服从指数分布.
选项
答案
(Ⅰ)由题设条件可知,(U,V)服从二维正态分布,因其相关系数ρ=0,则U与V相互独立且都服从标准正态分布N(0.1).根据独立随机变量和的卷积公式,X的概率密度f
X
(χ)为 [*] 计算得知X~N(0,2). (Ⅱ)当y≤0时,Y的分布函数F
Y
(y)=0.当y>0时, F
Y
(y)=P{Y≤y}=P{U
2
+V
2
≤y} [*] 因此Y的分布函数为 [*] 即Y服从参数为1/2的指数分布.
解析
转载请注明原文地址:https://kaotiyun.com/show/AFg4777K
0
考研数学一
相关试题推荐
设(X,Y)为二维连续型随机变量,则下列公式各项都有意义的条件下①f(x,y)=fX(x)fY(y);②fX(x)=∫-∞+∞fY(y)fX|Y(x|y)dx;④P{X<Y)=∫-∞+∞FX(y)fY(y)dy,其中FX(y)=∫-∞yfX(x)d
已知平面上三条不同直线的方程分别为l1=aχ+2by+3c=0,l2=bχ+2cy+3a=0,l3=cχ+2ay+3b=0,试证这三条直线交于一点的充分必要条件为a+b+c=0.
设则三条直线a1χ+b1y+c1=0,a2χ+b2y+c2=0,a3χ+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是()
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
函数u=在点M0(1,1,1)处沿曲面2z=χ2+y2在点M0处外法线方向n的方向导数=________.
设函数f(χ)连续,除个别点外二阶可导,其导函数y=f′(χ)的图像如图(1),令函数y=f(χ)的驻点的个数为P,极值点的个数为q,曲线y=f(χ)拐点的个数为r,则
设随机变量Xi~B(i,0.1),i=1,2,…,15,且X1,X2,…,X15相互独立,根据切比雪夫不等式,则P的值
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α.①求χTAχ的表达式.②求作正交变换χ=Qy,把χTAχ化为标准二次型.
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1-θ,p2=θ-θ2,p3=θ2-θ3,p4=θ3,记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n.确定a1,a2,a3,a4使
随机试题
下面是一份丰田公司的报告:临时报告和正规报告有什么不同?
中唐古文运动主要反对()
驱虫药中不宜入煎剂的药物是
以下有关阿莫西林的叙述,正确的是()。
下列条件属于地面水环境影响评价工作级别划分的依据的是()。
要约邀请不是合同成立过程中的必经过程,下列属于要约邀请的是( )。
流动性覆盖率(LCR)旨在确保商业银行具有充足的合格优质流动性资产,能够在银监会规定的流动性压力情景下,通过变现这些资产满足未来至少()日的流动性需求。
国学大师周国平说过:“何必用舞台上的_________来掩盖生活中的_________!”确实,命运多舛,世事无常,而真味是淡。一如当烟云褪尽,尘埃落定,邈远静谧处一颗心脏噗噗跳动轻微而有力的声音,便是生命最纯净而真挚的呼告。我们只需,俯下身,______
根据法律规定,人民法院对有些案件,依当事人的申请,可以裁定先予执行。下列选项中,不必裁定先予执行的是()。
Imagine,ifyouwill,theaveragegamesplayer.Whatdoyousee?Aguywhonevergrewup?Oranervous18-year-oldpushingbutto
最新回复
(
0
)