首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫0tf(x)dx+∫f(0)f(t)g(y)dy=t3(t≥0),则f(x)的表达式是_________.
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫0tf(x)dx+∫f(0)f(t)g(y)dy=t3(t≥0),则f(x)的表达式是_________.
admin
2019-07-28
60
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫
0
t
f(x)dx+∫
f(0)
f(t)
g(y)dy=t
3
(t≥0),则f(x)的表达式是_________.
选项
答案
f(x)=x
2
(x≥0).
解析
由定积分的几何意义知:
∫
0
t
f(x)dx=由曲线y=f(x),x、y轴及直线x=t>所围成的曲边梯形的面积,
∫
f(0)
f(t)
g(y)dy=由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积.
x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别
为t与f(t)),见右图.
于是 ∫
0
t
f(x)dx+∫
f(0)
f(t)
g(y)dy=tf(t).
因此 tf(t)=t
3
,f(t)=t
2
(t≥0),
即 f(x)=x
2
(x≥0).
转载请注明原文地址:https://kaotiyun.com/show/AXN4777K
0
考研数学二
相关试题推荐
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设矩阵A满足(2E-C-1B)AT=C-1,且B=求矩阵A.
设A为n阶矩阵,A2=A,则下列成立的是().
设A=有三个线性无关的特征向量,求a及An.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
已知二元函数f(x,y)满足且f(x,y)=g(u,v),若=u2+v2,求a,b.
积分∫aa+2πcosxln(2+cosx)dx的值
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F’’(x0)=0.
随机试题
[*]
正常人尿常规检查,不可能出现下列哪项结果
某企业只生产一种产品,按0.6的平滑系数预测4月份的销售量为18500件。该企业1~4月份的实际销售量与总成本资料如下:要求:(1)采用高低点法进行成本性态分析。(2)采用平滑指数法预测5月份的产销量。(3)根据成
甲公司采用出包方式交付承建商建设一条生产线。生产线建设工程于20×8年1月1日开工,至20×8年12月31日尚未完工。专门为该生产线建设筹集资金的情况如下:(1)20×8年1月1日,按每张98元的价格折价发行分期付息、到期还本的公司债券30万张
某镇为节省耕地、繁荣经济、加快小城镇建没,经镇政府研究决定,在紧靠老镇繁华地带的河边,改河道围沙滩100亩,进行商贸区扑发建设。由于土地造价低,又紧靠繁华地带,投资者热情很高,很快就引进了私营业者60多户到此区安家落户从事商贸经营活动。此商贸开发区启动营运
制发公文的目的和要求,一般是由()确定的。
使用VC6打开考生文件夹下的源程序文件modi2.cpp。完成函数fun(char*str,char*s)空出部分。函数fun(char*str,char*s)的功能是:将在字符串str中下标为偶数位置上的字符,紧随其后重复出现一次,放在一个新串s中,s
AHowtoUseaPaintingKnife使用画刀的方法Paintingwithaknifeisabitlikeputtingbutteronbreadandproducesquitea(1)resu
Inmanycountries,whenpeoplegivetheirname,theyrefertothemselvesusingtheirlastnameorfamilyname.IntheUnitedSt
Wedon’tknowwhentheroadwillbe(wide)______.
最新回复
(
0
)