首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫0tf(x)dx+∫f(0)f(t)g(y)dy=t3(t≥0),则f(x)的表达式是_________.
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫0tf(x)dx+∫f(0)f(t)g(y)dy=t3(t≥0),则f(x)的表达式是_________.
admin
2019-07-28
79
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫
0
t
f(x)dx+∫
f(0)
f(t)
g(y)dy=t
3
(t≥0),则f(x)的表达式是_________.
选项
答案
f(x)=x
2
(x≥0).
解析
由定积分的几何意义知:
∫
0
t
f(x)dx=由曲线y=f(x),x、y轴及直线x=t>所围成的曲边梯形的面积,
∫
f(0)
f(t)
g(y)dy=由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积.
x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别
为t与f(t)),见右图.
于是 ∫
0
t
f(x)dx+∫
f(0)
f(t)
g(y)dy=tf(t).
因此 tf(t)=t
3
,f(t)=t
2
(t≥0),
即 f(x)=x
2
(x≥0).
转载请注明原文地址:https://kaotiyun.com/show/AXN4777K
0
考研数学二
相关试题推荐
设且A~B.(1)求a;(2)求可逆矩阵P,使得P-1AP=B.
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
计算D2n=
设函数f(x)连续,且f’(0)>0,则存在δ>0使得().
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg.s2/m2),在垂直方向的比例系数为ky(kg.s2/m2).设飞机的质量
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得=a+b.
设a为常数,求
设有长为12cm的非均匀杆AB,AM部分的质量与动点M到端点A的距离x的平方成正比,杆的全部质量为360(g),则杆的质量表达式m(x)=_______,杆在任一点M处的线密度p(x)=_______.
(04年)设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处
已知一个长方形的长l以2cm/s的速率增加,宽加以3cm/s的速率增加。则当l=12cm,w=5cm时,它的对角线增加速率为______。
随机试题
月经周期为28天的妇女,要取子宫内膜活检测定是否有排卵,最好在周期的第
试论述学校和其他教育机构的义务。
《春江花月夜》一诗中由人生感叹转向写游子思妇的一句诗是()
下列关于气机失常病机的描述,不确定的是
患者,女,30岁,大叶性肺炎,遵医嘱给予补液抗感染治疗。在输液过程中,患者自诉胸闷异常不适,随之出现呼吸困难。查体:口唇发绀,听诊心前区可闻及响亮持续的“水泡声”。应立即采取的措施是
除另有规定外,一般片剂的崩解时限是泡腾片按规定方法检查6片,每片完全崩解的时间是
关于再审裁判,下列说法正确的是:()
影响企业筹资、投资和收益分配的法律法规是()。
某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生()。
通过符号的任意性特点,我们可以解释为什么人类社会有各种各样的语言。()
最新回复
(
0
)