首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫0tf(x)dx+∫f(0)f(t)g(y)dy=t3(t≥0),则f(x)的表达式是_________.
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫0tf(x)dx+∫f(0)f(t)g(y)dy=t3(t≥0),则f(x)的表达式是_________.
admin
2019-07-28
64
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫
0
t
f(x)dx+∫
f(0)
f(t)
g(y)dy=t
3
(t≥0),则f(x)的表达式是_________.
选项
答案
f(x)=x
2
(x≥0).
解析
由定积分的几何意义知:
∫
0
t
f(x)dx=由曲线y=f(x),x、y轴及直线x=t>所围成的曲边梯形的面积,
∫
f(0)
f(t)
g(y)dy=由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积.
x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别
为t与f(t)),见右图.
于是 ∫
0
t
f(x)dx+∫
f(0)
f(t)
g(y)dy=tf(t).
因此 tf(t)=t
3
,f(t)=t
2
(t≥0),
即 f(x)=x
2
(x≥0).
转载请注明原文地址:https://kaotiyun.com/show/AXN4777K
0
考研数学二
相关试题推荐
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P-1AP=B.
设A=有三个线性无关的特征向量,求χ,y满足的条件.
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α,β是n维非零列向量,A=αβT+βαT.证:r(A)≤2.
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0.证明:存在ξ∈(0,1),使得∫0ξ(x)dx=ξf(ξ).
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
交换积分次序并计算∫0adx∫0x
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
已知同阶方阵A,B满足:A2-B2=(A+B)(A-B)=(A-B)(A+B),试证:(A+B)2=A2+2AB+B2.
随机试题
A.银翘散合麻杏石甘汤加减B.五虎场合葶苈大枣泻肺汤C.沙参麦冬汤D.人参五味子汤加减E.参附龙牡救逆汤肺炎风热闭肺证的治疗方剂为()
肝素的抗凝血作用机制是()。
会计凭证按其填制的程序和用途不同,可以分为()。
影响销售渠道选择的因素有()。
调解委员会调解与人民法院处理劳动争议的调解,其主要区别是()
教育的目的是社会需求的集中反映,它集中体现________。
1,3,6,(),15。
根据《中华人民共和国刑法修正案(九)》,下列说法正确的是()。
中世纪大学分为“先生大学”和“学生大学”,属于“学生大学”的是()
Whydoesthewomanneedthejob?
最新回复
(
0
)