首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上二阶可导且f’’(x)≥0.证明:
设f(x)在区间[a,b]上二阶可导且f’’(x)≥0.证明:
admin
2018-05-22
71
问题
设f(x)在区间[a,b]上二阶可导且f’’(x)≥0.证明:
选项
答案
由泰勒公式得[*],其中ξ介于x与[*]之间,因为f’’(x)≥0,所以有f(x)≥[*],两边积分得∫
a
b
f(x)dx≥(b-a)[*] 令φ(x)=[*][f(x)+f(a)]-∫
a
x
f(t)dt,且φ(a)=0, φ’(x)=[*][f(x)+f(a)]+[*]f’(x)-f(x)=[*][f(x)-f(a)] =[*](x-a)[f’(x)-f’(η)],其中a≤η≤x, 因为f’’(x)≥0,所以f’(x)单调不减,于是φ’(x)≥0(a≤x≤b), 由[*]得φ(b)≥0,于是∫
a
b
f(x)dx≤[*][f(a)+f(b)], 故(b-a)[*]≤∫
a
b
f(x)dx≤[*][f(a)+f(b)].
解析
转载请注明原文地址:https://kaotiyun.com/show/qck4777K
0
考研数学二
相关试题推荐
(2010年试题,8)设A为四阶实对称矩阵,且A2+A=0,若A的秩为3,则A相似于().
(2000年试题,六)设函数(1)当n为正整数,且nπ≤x
(2004年试题,二)设A是三阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为().
(2002年试题,二)设y=y(x)是二阶常系数微分方程yn+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限().
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
设函数.(1)求f(x)的最小值;(2)设数列{xn}满足,证明存在,并求此极限.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记。(1)证明二次型f对应的矩阵为2ααT+ββT;(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T,(1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值.(2)将β1,β2,β3用α1,α2,α3线性表示
设f(x)连续,∫0xtf(x-t)dt=1-cosx,求
随机试题
描写四川农村生活的长篇“三记”()
肥胖型糖尿病首选治疗措施是
天然高分子成膜材料是
国家对()动物疫病实施强制免疫
生男孩的概率为0.52,生女孩的概率是0.48,则某孕妇生1个男孩和1个女孩的概率是
子宫内膜癌首选的治疗方法是
在实际核算中,国内生产总值的计算方法有()
中国儒家十三经之首的“易经”是最古老的系统思维方法,建立最早的模型与演绎方法,周易成为中医学的整体观与器官机能整合的理论基础,在古代希腊则有非加和性整体概念,但西医以分解和还原论方法占主导地位,现代西方心身医学的“社会——心理——生物”综合医学模式兴起,开
人类社会的发展是一个自然历史过程,这句话的含义是()。
A、Sheisnotaveryfamousactress.B、Sheisnotverymuchtemptedbybigmoney.C、Shehasnoideaofhowtomakeadvertisements
最新回复
(
0
)