首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
admin
2018-11-22
38
问题
已知A是3阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
选项
答案
设λ是矩阵A的任一特征值,α是属于特征值λ的特征向量,Aα=λα(α≠0),于是A
n
α=λ
n
α. 那么用α右乘A
4
+2A
3
+A
2
+2A=0,得(λ
4
+2λ
3
+λ
2
+2λ)α=0. 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ
3
+2λ
2
+λ+2)=λ(λ+2)(λ
2
+1)=0.由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或-2. 由于实对称矩阵必可相似对角化,且秩r(A)=r(A)=2,所以A的特征值是0,-2,-2. 因A~∧,则有A+E~∧+E=[*],所以r(A+E)=r(∧+E)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/AbM4777K
0
考研数学一
相关试题推荐
[*]=∫01xln(1+x)dx=[*]∫01ln(1+x)dx2=[*](ln(1+x).x2|01-∫01[*]dx)=1/4.
设A,B及A*都是n(n≥3)阶非零矩阵,且AB=O,则r(B)=().
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(X)]没有间断点。
求xy’’-y’lny’+y’lnx=0满足y(1)=2和y’(1)=e2的特解.
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=__________.
以yOz坐标面上的平面曲线段y=f(x)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为16πcm2,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm2/s增大,试求曲线y=f(z)的方程.
试写出oyz面上的双曲线分别绕z轴和y轴旋转而产生的旋转面的方程.
3架飞机(一长二僚)去执行轰炸任务,途中要过一敌方的高炮阵地,各机通过的概率均为0.8,通过后轰炸成功的概率均为0.3,各机间相互独立,但只有长机通过高炮阵地才有可能轰炸成功.求最终轰炸成功的概率.
设f(x),φ(x)在点x=0的某邻域内连续,且x→0时,f(x)是φ(x)的高阶无穷小,则x→0时,∫0xf(t)sintdt是∫0xtφ(t)dt的()无穷小.
下列说法正确的是().
随机试题
神经元尼氏体分布在()
A、Complimentarytailoring.B、Prolongedgoodswarranty.C、Freeinstallingofappliances.D、Refundingforgoodsreturned.A录音后面,男士
激光打印机结构中,不包括
羊水量过少是指
赛庚啶的结构类型属于
简述谈话活动的环境创设时应注意的问题。
一列火车长110米,现在以30千米/小时的速度向北缓缓行驶,12:20追上向北行走的路人甲,15秒钟后离开甲。12:26迎面遇上向南行走的路人乙,12秒后离开乙。请问甲和乙将于()相遇。
明朝后期,与中国发生联系的欧洲殖民者不包括()。
(A)条件(1)充分,但条件(2)不充分(B)条件(2)充分,但条件(1)不充分(C)条件(1)和(2)单独都不充分,但条件(1)和(2)联合起来充分(D)条件(1)充分,条件(2)也充分(E)条件(1)和(2)单独都不充分,条件(1)和
ANationThat’sLosingItsToolboxA)ThesceneinsidetheHomeDepotonWeymanAvenueherewouldgivetheold-timeAmericancraf
最新回复
(
0
)