设f(x)在[0,1]上二阶可导,且|f’’(x)|≤1(x∈[0,1]),又f(0)=f(1),证明: |f’(x)|≤(x∈[0,1]).

admin2018-01-23  20

问题 设f(x)在[0,1]上二阶可导,且|f’’(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:
|f’(x)|≤(x∈[0,1]).

选项

答案由泰勒公式得 f(0)=f(x)-f’(x)x+[*]f’’(ξ1)x2∈(0,x), f(1)=f(x)+f’(x)(1-x)+[*]f’’(ξ2)(1-x)2,ξ2∈(x,1), 两式相减,得f’(x)=[*]f’’(ξ1)x2-[*]f’’(ξ2)(1-x)2. 两边取绝对值,再由|f’’(x)|≤1,得 |f’(x)|≤[*][x2+(1-x)2]=[*].

解析
转载请注明原文地址:https://kaotiyun.com/show/AjX4777K
0

相关试题推荐
随机试题
最新回复(0)