首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的特征值为1,2,一3,求|A*+3A+2E|.
已知3阶矩阵A的特征值为1,2,一3,求|A*+3A+2E|.
admin
2020-11-13
59
问题
已知3阶矩阵A的特征值为1,2,一3,求|A
*
+3A+2E|.
选项
答案
由特征值的性质可知|A|=1×2×(一3)=一6,故A
*
的特征值分别一6,一3,2, 因此A
*
+3A+2E的特征值分别为 λ
1
=一6+3×1+2=一1,λ
2
=一3+3×2+2=5,λ
3
=2+3×(一3)+2=一5, 又A
*
+3A+2E是3阶矩阵,因此|A
*
+3A+2E|=一1×5×(一5)=25.
解析
转载请注明原文地址:https://kaotiyun.com/show/Axx4777K
0
考研数学三
相关试题推荐
(1991年)试证明函数在区间(0,+∞)内单调增加.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
(87年)求矩阵A=的实特征值及对应的特征向量.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设E为四阶单位矩阵,且B=(E+A)-1(E-A)则(E+B)-1=_____________.
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
随机试题
A、①B、②C、③D、④A
臁疮护理宜:
某生产企业主要生产A、B两类产品,目前市场对C产品的需求在增加,据此该企业拟投资建设生产C产品的项目,组建了项目工作小组以更好地分析A、B产品市场和进行C产品项目的前期工作,项目工作小组开展了下列工作:(1)项目经理召集工作小组成员进行市场研究,大
甲公司为增值税一般纳税人,适用的增值税税率为16%,2018年度至2020年度发生有关业务资料如下:(1)2018年1月1日,为建造一条生产线筹措资金,从银行取得借款500万元,期限为1年。合同年利率为6%,到期一次还本付息。所借款项已存入银行。
下列关于城市维护建设税的适用税率,表述正确的有()。
暴雨预警信号表示的降雨强度由低到高依次是()。
在清末,革命派与维新派的根本分歧在于()。
在吉尔福特的三维结构模型中,“符号”属于哪个维度?()。
Manyteachersbelievethattheresponsibilitiesforlearningliewiththestudent.(1)_____alongreadingassignmentisgiven,
EarlyinthefilmABeautifulMind,the【C1】______JohnNashisseensittinginaPrincetoncourtyard,hunchedoveraplayingboar
最新回复
(
0
)