∫0π/2sin2x/(1+esinx)dx=∫0π/2d(sin2x)/(1+esinx)=∫01dx/(1+ex)=∫01exdx/(e-x+1)=-∫01d(e-x+1)/(e-x+1)=-ln(e-x+1)|01=ln2e/(e+1).

admin2021-10-18  20

问题

选项

答案0π/2sin2x/(1+esinx)dx=∫0π/2d(sin2x)/(1+esinx)=∫01dx/(1+ex)=∫01exdx/(e-x+1)=-∫01d(e-x+1)/(e-x+1)=-ln(e-x+1)|01=ln2e/(e+1).

解析
转载请注明原文地址:https://kaotiyun.com/show/B3y4777K
0

最新回复(0)