首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)= _______,P(B)= _
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)= _______,P(B)= _
admin
2019-07-13
32
问题
已知X,Y为随机变量且P{X≥0,Y≥0}=
,P{X≥0}=P{Y≥0}=
,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)= _______,P(B)= _______ ,P(C)= _______。
选项
答案
[*]
解析
首先分析事件的关系,用简单事件运算去表示复杂事件,后应用概率性质计算概率。
由于A={max(X,Y)≥0}={X,Y至少有一个大于等于0}={X≥0}∪{Y≥0},所以
P(A)=P{X≥0}+P{Y≥0}—P{X≥0,Y≥0}=
。
又{max(X,Y)<0}
{min(X,Y)<0},则
B={max(X,Y)<0,min(X,Y)<0} ={max(X,Y)<0}=
。
从而 P(B)=
=1—P(A)=
。
根据全集分解式知A={max(X,Y)≥0}={max(X,Y)≥0,min(X,Y)<0}+{max(X,Y)≥0,min(X,Y)≥0}=C+{X≥0,Y≥0},故
P(C)=P(A)—P{X≥0,Y≥0}=
。
转载请注明原文地址:https://kaotiyun.com/show/BPc4777K
0
考研数学一
相关试题推荐
设xOy平面上有正方形D={(x,y)}0≤x≤1,0≤y≤1}及直线l=x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0).
求y’2-yy’’=1的通解.
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且∫(0,0)(t,t2)f(x,y)dx+xcosydy=t2,求f(x,y).
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量中α1-α2,α1-2α2+α3,(α1-α3),α1+3α2-4α3,是相应的齐次方程组Ax=O的解向量的个数为()
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关;(2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
求经过直线L:且与椭球面S:x2+2y2+3z2=21相切的切平面方程.
已知总体X服从瑞利分布,其密度函数为X1,…,Xn为取自总体X的简单随机样本,求θ的矩估计量,并问这个估计量是否为无偏估计量?
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
设随机变量序列X1,…,Xn,…相互独立,根据辛钦大数定律,当n→∞时Xi依概率收敛于其数学期望,只要{Xn,n≥1}
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分与路径无关,并且对任意t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy,求Q(x,y)。
随机试题
下列属于与组员沟通的技巧的是()。
在B-S完全不互溶的多级逆流萃取塔操作中,原用纯溶剂,现改用再生溶剂,其他条件不变,则对萃取操作的影响是()。
参照群体属于影响消费者购买行为的()
斑秃的形成多由于
卫生法基本原则中的国家监督是依据法律法规进行监督管理,通过监督管理( )
质量管理体系的八项原则,包括以顾客为关注点、全员参与原则、基于事实的决策方法、与供方互利的关系,以及()。
施工质量保证体系的运行,应以()为主线,以过程管理为重心,按照PDCA循环的原理展开控制。
企业自用土地使用权转换为采用公允价值模式计量的投资性房地产时形成的资本公积,待该项投资性房地产处置时,应转入()科目。
设X,Y为两个随机变量,且P(X≥0,Y≥0)=,则P{max(X,Y)≥0)=___________.
Email1To:DBLOnlineFrom:MarshaSmithSubject:OrderDearMr.Chapman,Wewouldliketobuy30Futuracomputers,model
最新回复
(
0
)