首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
admin
2021-01-25
47
问题
(13年)设二次型f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
2
+aχ
2
χ
2
+a
3
χ
3
)
2
+(b
1
χ
1
+b
2
χ
2
+b
3
χ
3
)
2
,记
(Ⅰ)证明二次型f对应的矩阵为2αα
T
+ββ
T
.
(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(Ⅰ)记χ=[*],由于 f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
1
+a
2
χ
2
+a
3
χ
3
)
2
+(b
1
χ
1
+b
2
χ
2
+b
3
χ
3
)
2
=2[(χ
1
,χ
2
,χ
3
)[*](a
1
,a
2
,a
3
)[*]]+[(χ
1
,χ
2
,χ
3
)[*](b
1
,b
2
,b
3
)[*]] =2χ
T
(αα
T
)χ+χ
T
(ββ
T
)χ =χ
T
(2αα
T
+ββ
T
)χ
T
, 又2αα
T
+ββ
T
为对称矩阵,所以二次型f的矩阵为2αα
T
+ββ
T
. (Ⅱ)记矩阵A=2αα
T
+ββ
T
.由于α,β正交且为单位向量,即α
T
α=1,β
T
β=1,α
T
β=β
T
α=0,所以 Aα=(2αα
T
+ββ
T
)α=2α, Aβ=(2αα
T
+ββ
T
)β=β, 于是λ
1
=2,λ
2
=1是矩阵A的特征值.又 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)≤2, 所以λ
3
=0是矩阵A的特征值.由于f在正交变换下的标准形中各变量平方项的系数为A的特征值,故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/CAx4777K
0
考研数学三
相关试题推荐
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
[2015年]设矩阵若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
[2002年]设随机变量X和y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=___________.
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
[2008年]设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩(A)≤2;
[2016年]行列式
设随机变量X的密度函数为f(x)=(1)求常数A;(2)求X在(0,)内的概率;(3)求X的分布函数F(x).
设总体X的概率分布为其中θ(0<θ<1/2)是未知参数.利用总体的样本值:3,1,3,0,3,1,2,3.求θ的最大似然估计值.
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
设X1,X2,…,Xn相互独立,且Xi(i=1,2,…)服从参数为λ(>0)的泊松分布,则下列选项正确的是()
随机试题
S4的产生机制是
(2017年)2015年以来,甲公司为了更好地应对企业变革中的阻力,决定邀请外部专家对员工开设一系列培训课程,内容涉及员工技能培训和业务能力提升等。根据以上信息,甲公司克服变革阻力的策略有()。
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.参考时限:阅读资料40分钟,参考作答110分钟。3.仔细阅读给定资料,按照后面提出来的“作答要求”作答。二、给
微博的“微言大义”、微信的“造微入妙”、微公益的“积微成著”,中国的2014和“微”字如影随形。我们在微平台上_______,凝聚真相,传递共识。填入画横线部分最恰当的一项是()。
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=_______.
若允许三个事务并行执行,请列出所有可能的正确结果。采用什么手段,可以解决并行调度的不一致问题?请简要回答。
Internet的雏形ARPAnet是( )建立起来的。
在数据库表上的字段有效性规则是( )。
Whymayyoubeunawareofthetimepassingbyinabookshop?Inthewriter’sopinion,whichofthefollowingisthebestwayto
A、Atthebank.B、Attheoffice.C、Atthebarbershop.D、Atthedepartmentstore.C此题中该女士说Tom将在回家的路上去理发,所以他现在最有可能在理发店,与选项(C)一致。如
最新回复
(
0
)