首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
admin
2021-01-25
99
问题
(13年)设二次型f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
2
+aχ
2
χ
2
+a
3
χ
3
)
2
+(b
1
χ
1
+b
2
χ
2
+b
3
χ
3
)
2
,记
(Ⅰ)证明二次型f对应的矩阵为2αα
T
+ββ
T
.
(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(Ⅰ)记χ=[*],由于 f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
1
+a
2
χ
2
+a
3
χ
3
)
2
+(b
1
χ
1
+b
2
χ
2
+b
3
χ
3
)
2
=2[(χ
1
,χ
2
,χ
3
)[*](a
1
,a
2
,a
3
)[*]]+[(χ
1
,χ
2
,χ
3
)[*](b
1
,b
2
,b
3
)[*]] =2χ
T
(αα
T
)χ+χ
T
(ββ
T
)χ =χ
T
(2αα
T
+ββ
T
)χ
T
, 又2αα
T
+ββ
T
为对称矩阵,所以二次型f的矩阵为2αα
T
+ββ
T
. (Ⅱ)记矩阵A=2αα
T
+ββ
T
.由于α,β正交且为单位向量,即α
T
α=1,β
T
β=1,α
T
β=β
T
α=0,所以 Aα=(2αα
T
+ββ
T
)α=2α, Aβ=(2αα
T
+ββ
T
)β=β, 于是λ
1
=2,λ
2
=1是矩阵A的特征值.又 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)≤2, 所以λ
3
=0是矩阵A的特征值.由于f在正交变换下的标准形中各变量平方项的系数为A的特征值,故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/CAx4777K
0
考研数学三
相关试题推荐
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
[2001年]设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P(|X+Y|≥6)≤_________.
[2002年]设随机变量X和Y都服从标准正态分布,则().
[2002年]假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(E(X))为5h.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h便关机.试求该设备开机无故障工作的时间Y的分布函数FY(y).
设总体X的概率密度为其中θ(0<θ<1)未知,X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.求参数θ的矩估计量;
已知函数f(x,y,z)=x3y2z及方程x+y+z一3+e-3=e-(x+y+z).(I)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求(Ⅱ)如果z=z(x,y)是由方程(*)确定的隐函数满足
已知0<P(B)<1且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是().
设f(x)在(一∞,+∞)上二阶导数连续,1)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
求下列积分
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{﹣1<X<4}≥a,则a的最大值为().
随机试题
熔断器在区域报警控制器设备中作为短路和过电流的保护器,是应用最普遍的保护器件之一。()
对比剂直接引入人体的方法的叙述,错误的是
发生重大动物疫情的疫区应采取的措施不包括
对开标应注意事项描述正确的有()。
对涉及混凝土结构安全的重要部位应进行结构现场检验,结构现场检验应在下列哪方面见证下进行?[2005年第35题]
根据《建设工程施工专业分包合同(示范文本)》GF—2003—0213的规定,承包人应当向分包人提供()。
通过寻求项目,发现具有投资价值的优质项目,并且能够与项目方达成投资合作共识,是私募股权基金盈利模式中的()阶段。
明明每天都有好多问题要问,有时还乱拆卸物品,妈妈很是烦恼,称他为“问题大王”和“破坏份子”。其实明明的行为是儿童好奇心、探究欲的正常表现,是其()发展的体现,成人应科学评价,正面引导,积极对待o
2015年1月,中共中央办公厅、国务院办公厅印发了《关于加快构建现代公共文化服务体系的意见》(以下简称《意见》)。《意见》对加快构建现代公共文化服务体系,推进基本公共文化服务标准化均等化,保障人民群众基本文化权益作了全面部署。《意见》指出,要培育
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:|x-a|
最新回复
(
0
)