设A,B均是n阶矩阵,满足AB=A+B,则r(AB-BA+A-E)=________.

admin2021-07-27  34

问题 设A,B均是n阶矩阵,满足AB=A+B,则r(AB-BA+A-E)=________.

选项

答案n

解析 由题设条件AB=A+B,得AB-A-B+E=E,即(A-E)(B-E)=E,从而知A-E和B-E是互逆矩阵且有(B-E)(A-E)=BA-A-B+E=E,即BA=A+B,则AB=BA,且r(A-E)=r(B-E)=n,故r(AB-BA+A-E)=r(A-E)=n.
转载请注明原文地址:https://kaotiyun.com/show/CHy4777K
0

最新回复(0)