首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上是导数连续的有界函数,|f(x)一f’(x)|≤1.证明:|f(x)|≤1.
设f(x)在(一∞,+∞)上是导数连续的有界函数,|f(x)一f’(x)|≤1.证明:|f(x)|≤1.
admin
2019-08-12
47
问题
设f(x)在(一∞,+∞)上是导数连续的有界函数,|f(x)一f’(x)|≤1.证明:|f(x)|≤1.
选项
答案
因为f(x)有界,所以[*] 于是e
-x
f(x)|
x
+∞
=∫
x
+∞
[e
-x
f(x)]’dx, 即一e
-x
f(x)=∫
x
+∞
一e
-x
[f(x)一f’(x)]dx,两边取绝对值得e
-x
|f(x)|≤∫
x
+∞
e
-x
|f(x)一f’(x)|dx≤∫
x
+∞
e
-x
dx=e
-x
,故|f(x)|≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/CON4777K
0
考研数学二
相关试题推荐
设3阶方阵A,B满足关系式A-1BA=6A+BA,且则B=________________.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,是导出组Ax=0的解向量的个数为()
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式成立.
f(x)在(一∞,+∞)上连续,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设A为实矩阵,证明ATA的特征值都是非负实数.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解。
参数a取何值时,线性方程组有无数个解?求其通解.
随机试题
下列哪个器官没参与组成肝外胆道()
情境领导理论认为,适宜采用命令型领导方式的员工成熟度类型是()
关于微生物的致病性,下列叙述哪项是错误的
目前对健康的定义是指
患者,女性,25岁。淋雨后打喷嚏、咳嗽、鼻塞、流涕,开始为清水样,3天后变稠,伴有咽痛,轻度畏寒、头痛。对该患者的护理措施正确的是
关于建筑领域资源节约的说法,错误的是()
对石灰、粉煤灰类基层中的粉煤灰,准确的要求是()。
房地产开发费用中的利息支出,如不能按转让房地产项目分摊并提供金融机构证明,房地产开发费用限额扣除的比例为()以内。
音乐教材的编写不必以音乐课程标准为依据。()
Cryingishardlyanactivityencouragedbysociety.Tears,betheyofsorrow,anger,orjoy,typicallymakeAmericansfeeluncom
最新回复
(
0
)