首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an),ai≠0. (1)证明:若A=αTα,则存在常数m,使得Ak=mA. (2)求可逆阵P,使P-1AP为对角阵.
设向量α=(a1,a2,…,an),ai≠0. (1)证明:若A=αTα,则存在常数m,使得Ak=mA. (2)求可逆阵P,使P-1AP为对角阵.
admin
2020-09-25
61
问题
设向量α=(a
1
,a
2
,…,a
n
),a
i
≠0.
(1)证明:若A=α
T
α,则存在常数m,使得A
k
=mA.
(2)求可逆阵P,使P
-1
AP为对角阵.
选项
答案
(1)A
k
=(α
T
α)(α
T
α)…(α
T
α)=α
T
(αα
T
)(αα
T
)…(αα
T
)α [*] β
2
=(一a
2
,a
1
,…,0)
T
,…,β
n
=(一a
n
,0,0,…,a
1
)
T
是A的属于特征值0的特征向量. 令P=(β
1
,β
2
,…,β
n
),则|P|≠0,且使P
-1
BP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CPx4777K
0
考研数学三
相关试题推荐
设A2一BA=E,其中A=,则B=___________.
设f(x,y,z)=ex+y2z,其中z=z(x,y)是由方程x+y+z+xyz=0所确定的隐函数,则fz’(0,1,—1)=________。
曲线y=lnx上与直线x+y=1垂直的切线方程为__________.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
微分方程的通解为______.
(1991年)试证明函数在区间(0,+∞)内单调增加.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
[2010年]设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则().
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.利用棣莫弗一拉普拉斯中心极限定理,求被盗索赔户不少
设5x12+x22+tx32+4x1x2一2x1x3一2x2x3为正定二次型,则t的取值范围是__________.
随机试题
Didyouexamineyourpapermoneyclosely?Seeifyoucanlocatea$5,$10,or$20billprintedbefore1964andmarked"Federal
女,8个月,因频繁呕吐、腹泻3天入院。大便稀水样,无腥臭味,10余次/日,量中等,查体:呼吸46次/分;脉搏140次/分,精神萎靡,皮肤弹性差,四肢温,前囟眼窝凹陷,心音低钝,腹胀,肠鸣音减弱,四肢无力,腱反射弱。化验:大便镜检WBC0~1/HP,血钠1
胶片感光乳剂层受光照射后发生的光化学反应是
口腔癌“无瘤”手术的要求不包括
实行会员分级结算制度的期货交易所,应当向结算会员收取结算担保金。()
迄今为止发展最快、渗透性最强、应用关键技术最广泛的行业是( )。
下列不是普契尼创作的歌剧的是()
Youshouldspendabout20minutesonthistask.Thetablebelowshowssocialandeconomicindicatorsforfourcountriesin1
Exercisehaslongbeentreatedasthecure-allforeverythingthatailsyou.Supporterssayyouwillloseweightandbringyour
Learningisanessentialprocessforlivingthingstoacquirenecessaryskillsandbehaviors.Scientistshavealreadyfoundthat
最新回复
(
0
)