首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)为连续函数,交换累次积分∫02πdx∫0sinxf(x,y)dy的次序为先x后y成为( )
设f(x,y)为连续函数,交换累次积分∫02πdx∫0sinxf(x,y)dy的次序为先x后y成为( )
admin
2018-09-20
70
问题
设f(x,y)为连续函数,交换累次积分∫
0
2π
dx∫
0
sinx
f(x,y)dy的次序为先x后y成为( )
选项
A、∫
0
1
dy∫
arcsiny
π-arcsiny
f(x y)dx+∫
-1
0
dy∫
π-arcsiny
2π+arcsiny
f(x,y)dx
B、∫
0
1
dy∫
arcsiny
π-arcsiny
f(x y)dx-∫
-1
0
dy∫
π-arcsiny
2π+arcsiny
f(x,y)dx
C、∫
0
1
dy∫
arcsiny
π-arcsiny
f(x y)dx+∫
-1
0
dy∫
π+arcsiny
2π-arcsiny
f(x,y)dx
D、∫
0
1
dy∫
arcsiny
π-arcsiny
f(x y)dx-∫
-1
0
dy∫
π+arcsiny
2π-arcsiny
f(x,y)dx
答案
B
解析
在区间[0,2π]上,∫
0
sinx
f(x,y)dy的上限sin x可能小于下限0.所以∫
0
2π
dx∫
0
sinx
f(x,y)dy只是一个累次积分,而不是一个二重积分,所以应先变形,化成两个二重积分,即
∫
0
2π
dx∫
0
sinx
f(x,y)dy=∫
0
π
dx∫
0
sinx
f(x,y)dy+∫
π
2π
dx∫
0
sinx
f(x,y)dy
=∫
0
π
dx∫
0
sinx
f(x,y)dy—∫
π
2π
dx∫
sinx
0
f(x,y)dy.
交换积分次序,有
∫
0
π
dx∫
0
sinx
f(x,y)dy=∫
0
1
dy∫
arcsiny
π-arcsiny
f(x,y)dx,
∫
0
2π
dx∫
sinx
0
f(x,y)dy=∫
-1
0
dy∫
π-arcsiny
2π+arcsiny
f(x,y)dx,
故选(B).
转载请注明原文地址:https://kaotiyun.com/show/CVW4777K
0
考研数学三
相关试题推荐
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足y(x)=1的解.(1)求F(x)关于x的幂级数;(2)求的和.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
[*]被积函数为无理式,先作变量代换化为有理式后再计算.用换元积分法,作变量代换于是X=(t2一1)2,dx=4(t2一1)tdt.当x从0变到1时,t从1变到,从而
设f(x)二阶可导,且f"(x)≥0,u(t)为任一连续函数;a>0,求证:∫0af(t)]dt≥f(∫0au(t)dt).
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(A)=g(b)=0,试证:(Ⅰ)在开区间(a,b)内g(x)≠0;(Ⅱ)在开区间(a,b)内至少存在一点ξ,使
设函数f(u)可微,且f’(0)=,则z=分(4x2一y2)在点(1,2)处的全微分dz|(1,2)=________。
设则下列矩阵中与A合同但不相似的是
设n是奇数,将1,2,3,…,n2共n2个数,排成一个n阶行列式,使其每行及每列元素的和都相等,证明:该行列式的值是全体元素之和的整数倍.
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)