首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
admin
2019-03-23
61
问题
设齐次线性方程组
的系数矩阵为A=
,设M
i
(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:
如果A的秩为n—1,则方程组的所有解向量是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
选项
答案
因为R(A)=n—1,所以方程组的基础解系所含解向量的个数为n—(n—1)=1,同时因为R(A)=n—1,说明A中至少有一个(n—1)阶子式≠0,即M
1
,M
2
,…,M
n
不全为0,于是(M
1
,—M
2
,…,(—1)
n—1
M
n
)是方程组的一个非零解,它可作为方程组的一个基础解系。故方程组的解都是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
解析
转载请注明原文地址:https://kaotiyun.com/show/CXV4777K
0
考研数学二
相关试题推荐
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
已知α=(1,1,-1)T是A=的特征向量,求a,b和α的特征值λ.
下列矩阵中不能相似对角化的是
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
已知方程组总有解,则λ应满足_________.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
随机试题
8个月早产儿,现1个月,母乳喂养,首先应添加的辅食是()
关于企业领导者在企业文化建设中的作用,错误的是()。
()可以成为商业银行分散风险的资金运用方式。
上海佘山国家旅游度假区是一个以山见长、以水为辅、古今交融、中西合璧的自然人文度假游览区,建立于()年。
“走自己的道路,建设有中国特色的社会主义”这一重要思想是在()上正式提出的。
统计结果表明,就糖尿病的发病率看,城市为农村的近三倍,有人认为这归咎于城市人高脂肪、高蛋白、高热量食物的高摄入量。而农村相对较少有人具备这种“富贵病”的条件。其实,这种看法很难成立,因为它忽略了这样一个事实:目前城市人均寿命高于80岁,而农村的则不到60岁
民事责任中,属于财产责任的是()。
Builtfortrainstorunon.Providesomething.
UnemploymentEdgesHigherVocabularyandExpressionsdeteriorateaccelerationslowdownsWhichofthefollowingstateme
Eachartistknowsinhisheartthatheissayingsomethingtothepublic.Hehopesthepublicwilllistenandunderstand—hewant
最新回复
(
0
)