首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
admin
2019-03-23
90
问题
设齐次线性方程组
的系数矩阵为A=
,设M
i
(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:
如果A的秩为n—1,则方程组的所有解向量是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
选项
答案
因为R(A)=n—1,所以方程组的基础解系所含解向量的个数为n—(n—1)=1,同时因为R(A)=n—1,说明A中至少有一个(n—1)阶子式≠0,即M
1
,M
2
,…,M
n
不全为0,于是(M
1
,—M
2
,…,(—1)
n—1
M
n
)是方程组的一个非零解,它可作为方程组的一个基础解系。故方程组的解都是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
解析
转载请注明原文地址:https://kaotiyun.com/show/CXV4777K
0
考研数学二
相关试题推荐
设B是3阶实对称矩阵,特征值为1,1,-2,并且α=(1,-1,1)T是B的特征向量,特征值为-2.求B.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知方程组总有解,则λ应满足_________.
已知a,b,c不全为零,证明方程组只有零解.
,已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设函数f(x,y)=讨论f(x,y)在(0,0)点的可微性.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
随机试题
小脑位于_______,小脑半球下面近枕骨大孔处向下膨出的部分称_______。
上颌基托的哪个部分适宜做薄,以减少发音影响
债权人提出破产申请,债务人对申请有异议的,应当向人民法院提出,提出的期限是()。
在房地产估价中,建筑物折旧=建筑物重新购建价格-()。
《旅游法》第102条规定,导游员向旅游者索要小费的,由旅游主管部门责令退还,处()罚款;情节严重的,并暂扣或者吊销导游证。
在合作办学、委托培养、劳动用工和教师聘任等方面发生的法律责任属于()。
新入职的张老师对学生的要求十分严格。有一次晓明迟到了一分钟,张老师在没问原因的情况下便不准晓明坐回座位,让他站在教室后面听了一上午的课。平时学生向张老师礼貌问好,张老师都是对学生不理不睬的。慢慢地,越来越多的学生对张老师敬而远之。有一天,学校组织“学生与老
火:火热
根据以下资料,回答下列问题2012-2015年,我国65岁及以上人口年均增长量大约是多少万人?
信息系统工程监理实行总监理工程师负责制,总监理工程师具有(48)。
最新回复
(
0
)