首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
admin
2019-03-23
92
问题
设齐次线性方程组
的系数矩阵为A=
,设M
i
(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:
如果A的秩为n—1,则方程组的所有解向量是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
选项
答案
因为R(A)=n—1,所以方程组的基础解系所含解向量的个数为n—(n—1)=1,同时因为R(A)=n—1,说明A中至少有一个(n—1)阶子式≠0,即M
1
,M
2
,…,M
n
不全为0,于是(M
1
,—M
2
,…,(—1)
n—1
M
n
)是方程组的一个非零解,它可作为方程组的一个基础解系。故方程组的解都是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
解析
转载请注明原文地址:https://kaotiyun.com/show/CXV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
A=,r(A)=2,则()是A*X=0的基础解系.
,已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设函数f(x,y)=讨论f(x,y)在(0,0)点的可微性.
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
随机试题
将通货膨胀分为温和的通货膨胀和恶性的通货膨胀是按__________标准进行分类的。()
脑脊液的主要吸收部位在
Papillon-Lefevre综合征是指
电力变压器运行时,下列哪一项故障及异常情况应瞬时跳闸?()
某建设项目,当资本利率i1=15%时,净现值为560万元;当i2=18%时,净现值为一630万元。基准收益率为10%,则该项目的内部收益率应()。[2007年真题]
瓶中装有浓度为20%的酒精溶液1000克,现在又分别倒人200克和400克的A、B两种酒精溶液,瓶里的溶液浓度变为15%,已知A种酒精溶液的浓度是B种酒精溶液浓度的2倍。那么A种酒精溶液的浓度是多少?
内隐联想测验是由______提出的。()
班主任为组织管理而开展班级活动时,最重要的是要树立()。
Manyarticlesandbookshavebeenwritteninrecentyearsaboutcultureinorganizations,usuallyreferredtoas"CorporateCult
【B1】【B13】
最新回复
(
0
)