首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: 如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
admin
2019-03-23
76
问题
设齐次线性方程组
的系数矩阵为A=
,设M
i
(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:
如果A的秩为n—1,则方程组的所有解向量是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
选项
答案
因为R(A)=n—1,所以方程组的基础解系所含解向量的个数为n—(n—1)=1,同时因为R(A)=n—1,说明A中至少有一个(n—1)阶子式≠0,即M
1
,M
2
,…,M
n
不全为0,于是(M
1
,—M
2
,…,(—1)
n—1
M
n
)是方程组的一个非零解,它可作为方程组的一个基础解系。故方程组的解都是(M
1
,—M
2
,…,(—1)
n—1
M
n
)的倍数。
解析
转载请注明原文地址:https://kaotiyun.com/show/CXV4777K
0
考研数学二
相关试题推荐
设B是3阶实对称矩阵,特征值为1,1,-2,并且α=(1,-1,1)T是B的特征向量,特征值为-2.求B.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
下列矩阵中不能相似对角化的是
求线性方程组的通解,并求满足条件x12=x22的所有解.
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
已知某企业的总收益函数为R(Q)=26Q一2Q2一4Q3,总成本函数为C(Q)=8Q+Q2,其中Q表示产品的产量.求边际收益函数、边际成本函数以及利润最大时的产量.
随机试题
设f在[-a,a]上可积,证明:(1)若f为奇函数,则∫-aaf(x)dx=0;(2)若f为偶函数,则∫-aaf(x)dx=2∫0af(x)dx.
公民,法人或者其他组织违反行政管理秩序的行为,应当给予行政处罚,下列不属于简易程序的是()。
某建设项目的现金流量见下图,则该建设项目的静态投资回收期为()年。
拼音输入法属于汉字编码中的( )。
下列关于项目特征的描述,正确的有()。[2008年真题]
绩效考核侧重于()。
某公司位于北京市东城区,则该公司适用的城建税税率应为()。
随着业务的不断发展,某公司决定进行一项具有国际领先水平的高科技项目。由公司副总裁任项目经理,组建一个40名成员的项目团队,这些成员来自公司的研发部、生产部、工程部、销售部、财务部、采购部和市场部等。团队的组建采用强矩阵式管理结构。但是项目团队并不是一开始就
在下列字符中,其ASCII码值最小的一个是
Ifyou’regoingtotheairportbycar,couldyougivemea______?
最新回复
(
0
)