首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()=1,f(1)=0.证明: (1)存在η∈(,1),使得f(η)-η; (2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
设f(χ)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()=1,f(1)=0.证明: (1)存在η∈(,1),使得f(η)-η; (2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
admin
2019-06-28
56
问题
设f(χ)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(
)=1,f(1)=0.证明:
(1)存在η∈(
,1),使得f(η)-η;
(2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
选项
答案
(1)令φ(χ)=f(χ)-χ,φ(χ)在[0,1]上连续,[*]>0,φ(1)=-1<0, 由零点定理,存在η∈([*],1),使得φ(η)=0,即f(η)=η. (2)设F(χ)=e
-kχ
φ(χ),显然F(χ)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0,由罗尔定理,存在ξ∈(0,η),使得F′(ξ)=0,整理得f′(ξ)-k[f(ξ)-ξ]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/CZV4777K
0
考研数学二
相关试题推荐
设对任意的x,总有φ(x)≤f(x)≤g(x),且[g(x)一φ(x)]=0,则f(x)()
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。求A的全部特征值;
已知的一个特征向量。问A能不能相似对角化?并说明理由。
下列选项中矩阵A和B相似的是()
设f(x)是连续函数,且f(t)dt=x,则f(7)=______.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵,使得QTAQ=。
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
当x→0时,下列四个无穷小中,比其他三个高阶的无穷小是()
随机试题
月经量极少,甚至无月经的是
结核性腹膜炎的感染途径主要是
患者,男,25岁。左下后牙区痛,查左下7牙龈红肿,牙周溢脓,黏膜饱满,左下7无叩击痛和刺激痛。最适合该病的治疗措施是
善治肠痈的药是
为了有效使用土地,()对土地的归属、使用、监督检查等作了明确的规定,是我国进行土地管理的基本依据。
下列关于双代号绘图法的表述,正确的是()。
在微波炉行业,格兰仕占了一半以上的市场份额,财源滚滚而人。根据波士顿矩阵,微波炉是格兰仕的()。
contaminate
[*]
下面关于USB的叙述中,错误的是()。
最新回复
(
0
)