首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以y=ex(cos 2x+sin 2x)为通解的二阶常系数齐次线性微分方程为___________。
以y=ex(cos 2x+sin 2x)为通解的二阶常系数齐次线性微分方程为___________。
admin
2019-01-25
46
问题
以y=e
x
(cos 2x+sin 2x)为通解的二阶常系数齐次线性微分方程为___________。
选项
答案
y"-2y'+5y=0
解析
本题考查常系数齐次线性微分方程的通解形式。当对应特征方程有两个不同的特征根r
1
,r
2
,通解的形式为y=C
1
e
r
1
x
+C
2
e
r
2
x
;当对应特征方程有两个相同的特征根r
1
,通解的形式为y=(C
1
+C
2
x)e
r
1
x
;当对应特征方程有两个共轭复根r
1,2
=α±β(β>0),通解的形式为y=e
αx
(C
1
cosβx+C
2
sinβx)。
已知y=e
x
(cos 2x+sin 2x)是二阶常系数齐次微分方程的通解,因此可知齐次微分方程对应的特征根为r=1±2i,可得特征方程为
[x-(1+2i)][x-(1-2i)]=(x-1-2i)(x-1+2i)
=(1-x)
2
+4=x
2
-2x+5=0,
因此对应二阶常系数齐次线性微分方程为y"-2y'+5y=0。
转载请注明原文地址:https://kaotiyun.com/show/ChP4777K
0
考研数学三
相关试题推荐
已知关系式f’(一x)=x[f’(x)一1],试求函数f(x)的表达式.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
设三阶实对称矩阵A的特征值是1,2,3.A的属于特征值1,2的特征向量分别是α1=[一1,一1,1]T,α2=[1,一2,一1]T.(1)求A的属于特征值3的特征向量.(2)求矩阵A.
已知A,B均是m×n矩阵,r(A)=n一s,r(B)=n一r,且r+s>n,证明:线性方程组AX=0,BX=0有非零公共解.
已知矩阵A=有三个线性无关的特征向量,λ=5是矩阵A的二重特征值,A*是矩阵A的伴随矩阵,求可逆矩阵P,使P—1A*P为对角矩阵.
设某个系统由5个相同的元件按如图3—1所示的方式联接而成,各元件的工作状态相互独立,而且每个元件的正常工作时间服从参数为λ>0的指数分布,试求系统正常工作时间T的概率分布.
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
设总体X~N(μ,σ2),其中σ2已知,若已知样本容量和置信度1—α均不变,则对于不同的样本观测值,总体均值μ的置信区间的长度().
设常数λ>0且级数收敛,则级数
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1,则下列说法正确的是
随机试题
根据我国《劳动法》关于劳动争议的规定,下列哪些说法是错误的?
下列哪项为胰腺癌常见伴发病
砂仁具有的功效是
阻生智齿所导致的危害中,哪项可除外
一患者行金属烤瓷冠修复.冠就位后发现冠十分密合.经调无早接触后选择聚羧酸黏同剂黏固,调拌黏固剂时严格按照粉、液比例,按就位道方向就位,面垫一棉卷.让患者紧咬5min.黏固完成后再次检查发现咬合过高。在黏固前可采取何种预防措施
在归纳中药药物性能中应用阴阳学说,以下药物中属于阳的是()。
[2012年,第44题]按系统命名法,下列有机化合物命名正确的是()。
“2015年珠海社会治理创新优秀案例培育行动”共征集到约100个案例。经仔细对照案例情况与报名要求,最终有96个案例符合培育标准,即将进入公众投票与专家评审阶段。这些案例代表了珠海创新社会治理、加强社会建设的最新探索与成果,将孵化出这座城市的善治新标杆。
孕妇很容易出现维生素缺乏症状,有人认为这不是由于饮食中缺乏维生素造成的,而通常是由于腹内婴儿的生长时对维生素的大量需求造成的。为了评价上述结论的确切程度,以下哪项操作最为重要?()
已知一算术表达式的中缀形式为A+B*C-D/E,后缀形式为ABC*+DE/一,其前缀形式为()。
最新回复
(
0
)