首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A2X线性无关,且满足A3X=3AX一2A2X.(1)记P=[X,AX,A2X],求三阶矩阵B,使A=PBP-1;(2)计算行列式∣A+E∣.
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A2X线性无关,且满足A3X=3AX一2A2X.(1)记P=[X,AX,A2X],求三阶矩阵B,使A=PBP-1;(2)计算行列式∣A+E∣.
admin
2019-05-10
61
问题
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A
2
X线性无关,且满足A
3
X=3AX一2A
2
X.(1)记P=[X,AX,A
2
X],求三阶矩阵B,使A=PBP
-1
;(2)计算行列式∣A+E∣.
选项
答案
本题是求A的相似矩阵:B=P
-1
AP,但P=[X,AX,A
2
X]中的向量不是A的特征向量,故它不是通常的相似对角化问题.可采用相似对角化思想,即将A=PBP
-1
改写为AP=PB,由此求出B.至于行列式∣A+E∣可利用相似矩阵的行列式相等求得. (1)解一 设B=[*],由AP=PB得到 [AX,A
2
X,A
3
X]=[X,AX,A
2
X][*] 即 [*] 由于X,AX,A
2
X线性无关,由式①可得a
1
=0,b
1
=l,c
1
=0;由式②可得a
2
=0,b
2
=0,c
2
=l; 由式③可得a
3
=0,b
3
=3,c
3
=一2,于是B=[*] 解二 B=P
-1
AP=[X,AX,A
2
X]
-1
A[X,AX,A
2
X]=[X,AX,A
2
X]
-1
[AX,A
2
X,A
3
X] =[X,AX,A
2
X]
-1
[AX,A
2
X,3AX一2A
2
X] =[X,AX,A
2
X]
-1
[X,AX,A
2
X][*] (2)由(1)知,A与B相似,则由命题2.5.3.4知A+E与B+E也相似,且 ∣A+E∣=∣B+E∣=[*]=一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/CjV4777K
0
考研数学二
相关试题推荐
设n阶矩阵A与B相似,E为n阶单位矩阵,则()
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从χ轴上(χ0,0)处发射一枚导弹向飞机飞去(χ0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设2n阶行列式D的某一列元素及其余子式都等于a,则D=()
随机试题
1Crl8Ni9Ti奥氏体不锈钢和Q235一A低碳素钢采用手工钨极氩弧焊焊接时,如不加填充焊丝,则焊缝中不可避免地会出现_____组织。
教师职业道德的核心是()。
《咬文嚼字》的作者是()
A.CRT显示器B.4:3的横屏显示器C.1K显示器D.5MP显示器E.平板液晶显示器利用阴极射线显示的医院显示器是
法律责任的减轻和免除的条件包括下列哪一或哪些方面?()
经纬仪的主要功能是测量()。
据某省2013年国民经济和社会发展统计公报资料,该省人民生活和社会保障稳步提高。(一)城乡居民收入稳步增长。全年农民人均纯收入8781元,比上年增长12.2%;城镇居民人均可支配收入21873元,增加10.1%。农村居民恩格尔系数42.3%,城镇居民恩格
Writeanessayof160-200wordsbasedonthedrawing.Inyouressay,youshould1)describethedrawingbriefly,2)explainit
已有定义double *p;,请写出完整的语句,利用malloc函数使p指向一个双精度型的动态存储单元【 】。
GroupSpecifically,"group"isacollectionofpeoplewhointeractwitheachotherovertimetoaccomplishacommongoal.The
最新回复
(
0
)