首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A2X线性无关,且满足A3X=3AX一2A2X.(1)记P=[X,AX,A2X],求三阶矩阵B,使A=PBP-1;(2)计算行列式∣A+E∣.
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A2X线性无关,且满足A3X=3AX一2A2X.(1)记P=[X,AX,A2X],求三阶矩阵B,使A=PBP-1;(2)计算行列式∣A+E∣.
admin
2019-05-10
76
问题
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A
2
X线性无关,且满足A
3
X=3AX一2A
2
X.(1)记P=[X,AX,A
2
X],求三阶矩阵B,使A=PBP
-1
;(2)计算行列式∣A+E∣.
选项
答案
本题是求A的相似矩阵:B=P
-1
AP,但P=[X,AX,A
2
X]中的向量不是A的特征向量,故它不是通常的相似对角化问题.可采用相似对角化思想,即将A=PBP
-1
改写为AP=PB,由此求出B.至于行列式∣A+E∣可利用相似矩阵的行列式相等求得. (1)解一 设B=[*],由AP=PB得到 [AX,A
2
X,A
3
X]=[X,AX,A
2
X][*] 即 [*] 由于X,AX,A
2
X线性无关,由式①可得a
1
=0,b
1
=l,c
1
=0;由式②可得a
2
=0,b
2
=0,c
2
=l; 由式③可得a
3
=0,b
3
=3,c
3
=一2,于是B=[*] 解二 B=P
-1
AP=[X,AX,A
2
X]
-1
A[X,AX,A
2
X]=[X,AX,A
2
X]
-1
[AX,A
2
X,A
3
X] =[X,AX,A
2
X]
-1
[AX,A
2
X,3AX一2A
2
X] =[X,AX,A
2
X]
-1
[X,AX,A
2
X][*] (2)由(1)知,A与B相似,则由命题2.5.3.4知A+E与B+E也相似,且 ∣A+E∣=∣B+E∣=[*]=一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/CjV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
证明:用二重积分证明
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
计算行列式
随机试题
无产阶级掌握民主革命领导权的关键是()
正常人粪便呈色的主要因素是粪便中有
天台乌药散的组成中不含
1952年,美国的大卫.杜兰特把当时对资本结构的见解划分为三种:净经营收入理论、()和介入两者之间的传统折中理论。
根据规定,股份有限公司公开发行股票时,应当组织承销团承销的有()。
【2014年】甲公司主要从事家电产品的生产和销售。ABC会计师事务所负责审计甲公司2013年度财务报表。审计项目组在审计工作底稿中记录了与存货监盘相关的情况,部分内容摘录如下:(1)审计项目组拟不信赖与存货相关的内部控制运行的有效性,故在监盘时不再观察管
学习迁移可以划分成哪些不同的类型?
酒令,是酒席上的一种助兴游戏,一般是指席间推举一人为令官,余者听令轮流说诗词、联语或其他类似游戏,违令者或负者罚饮,所以又称“行令饮酒”。下列酒令与其年代对应正确的是:
在某校新当选的校学生会的七名委员中,有一个大连人,两个北方人,一个福州人,两个特长生(即有特殊专长的学生),三个贫困生(即有特殊经济困难的学生)。假设上述介绍涉及了该学生会中的所有委员,则以下各项关于该学生会委员的断定都与题干不矛盾。除了:
両親は旅行を止めました。そのお金で新しい冷蔵庫と洗濯機を買いました。
最新回复
(
0
)