首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (I)(x一2)dy=[y+2(x一2)3]dx; (Ⅱ)(1+y2)dx=(aretany一x)dy; (Ⅲ)y’+2y=sinx; (Ⅳ) (V) (Ⅵ) (Ⅶ) (Ⅷ) (Ⅸ)xdy—ydx=y2eydy; (X)y’’+5y
求下列微分方程的通解: (I)(x一2)dy=[y+2(x一2)3]dx; (Ⅱ)(1+y2)dx=(aretany一x)dy; (Ⅲ)y’+2y=sinx; (Ⅳ) (V) (Ⅵ) (Ⅶ) (Ⅷ) (Ⅸ)xdy—ydx=y2eydy; (X)y’’+5y
admin
2019-03-12
91
问题
求下列微分方程的通解:
(I)(x一2)dy=[y+2(x一2)
3
]dx;
(Ⅱ)(1+y
2
)dx=(aretany一x)dy;
(Ⅲ)y’+2y=sinx;
(Ⅳ)
(V)
(Ⅵ)
(Ⅶ)
(Ⅷ)
(Ⅸ)xdy—ydx=y
2
e
y
dy;
(X)y’’+5y’+6y=e
x
;
(Ⅺ)y’’+9y=6eos3x.
选项
答案
(I)原方程可改写为[*]这是一阶线性微分方程,用积分因子[*]同乘方程两端可得[*],两边求积分即得通解[*]即 y=C(x一2)+(x一2)
3
,其中C是任意常数. (Ⅱ)原方程可改写成[*]这是以x=x(y)为未知函数的一阶线性微分方程,用积分因子[*] 同乘方程两端可得[*] 两边求积分即得通解[*] 即 x=Ce
-arctany
+arctany一1,其中C是任意常数. (Ⅲ)用积分因子e
2x
同乘方程两端,可得[*] 因为 ∫e
2x
sinxdx=一∫e
2x
d(cosx)=-e
2x
cosx+2∫e
2x
cosxdx=-e
2x
cosx+2∫e
2x
d(sinx) =一e
2x
cosx+2(e
2x
sinx一2∫e
2x
sinxdx)=e
2x
(2sinx一cosx)一4∫e
2x
sinxdx, [*] 代入即得通解[*]其中C是任意常数. (Ⅳ)原方程可变形为[*]于是,由一阶线性微分 方程公式法,得通解 [*] 故原方程的通解为[*] (V)题设方程为齐次微分方程.当x>0时[*]可把方程改写成 [*] (Ⅵ)题设方程为齐次微分方程,方程可改写成 [*] (Ⅶ)将y看成自变量,x看成是y的函数x=x(y),则原方程是齐次微分方程.令[*]代入原方程,得 [*] 这是一个变量可分离型方程,其通解为y(e
u
+u)=C.所以原微分方程的通解为[*] (Ⅷ)因为y’cosy=(siny)’,令u=siny,则原微分方程化为 u’+u=x. 这是关于未知函数u(x)的一个一阶线性非齐次微分方程,其通解为 [*] 所以原微分方程的通解为siny=Ce
-x
+x一1. (Ⅸ)当y≠0时,将原方程变为如下形式: [*] 所以原方程是一个全微分方程,其通解为 [*] (X)因特征方程是λ
2
+5λ+6=(λ+2)(λ+3)=0→特征根为λ
1
=一2,λ
2
=一3.而自由项f(z)=e
x
,故可设非齐次方程有特解y
*
=Ae
x
,代入原方程可确定[*]故方程的通解为 [*] (XI)对应的特征方程为λ
2
+9=(λ一3i)(λ+3i)=0→特征根为λ
1
=3i,λ
2
=一3i,由方程的非齐次项6cos3x可知,应设非齐次方程的特解具有形式y
*
=x(Acos3x+Bsin3x).计算可得 [*] 从而A=0,B=1.综合得通解y=(C
2
+x)sin3x+C
2
cos3x.
解析
转载请注明原文地址:https://kaotiyun.com/show/CuP4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数λ=的指数分布,令Y=min(X,2),求随机变量Y的分布函数F(y).
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足P{|一μ|<μ}=0.95的常数μ=________.(φ(1.96)=0.975)
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,求:V=|X—Y|的概率密度fV(ν).
设随机变量X的分布函数为F(x)=已知P{一1<X<1}=,则a=_______,b=________.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1).证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设z=f(u),方程u=φ(u)+∫yχp(t)dt确定是χ,y的函数,其中f(u),φ(u)可微,p(t),φ′(u)连续且φ′(u)≠1,则=().
设A为n阶实对称矩阵,满足A2=层,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
差分方程的通解为_______________________.
设向量组α1,α2,…,αm线性相关,且α1≠0,证明存在某个向量αk(2≤k≤m),使αk能由α1,α2,…,αk—1线性表示。
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从
随机试题
A.肝阳上亢证B.肾阴虚证C.肝阴虚证D.肝火上炎证E.肝血虚证
如图所示的两个卡诺循环中,ABCD所围的面积小于EFGH所围的面积,三条等温线T1<T2<T3。关于两个循环,下列叙述正确的是:
施工过程中,如果发包人要求承包人使用专利技术或特殊工艺施工,应由( )。
锅炉宜选用额定供热量不大于140kW的小型锅炉。当采用燃煤锅炉时,宜选用具有除尘功能的自然通风型锅炉。锅炉烟囱出口应高出屋顶()m及以上,且应采取防止火星外逸的有效措施。
()资产评估是对一类或几类资产的价值进行的评估。
在Word的编辑状态,进行“替换”操作时,应当使用()。
目前我国所指的出境旅游,是指()。
影响与制约政府职能转变的要素有()。
Inthefirstparagraph,theauthorquotesStraussmann’swordsinordertomakeclear______.Today’scorporateexecutiveoffice
TheUnitedStatesproducedmorecrudeoilinOctoberthanitimportedforthefirsttimesinceearly1995,asdomesticshaleoil
最新回复
(
0
)