首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,t∈(0,1),则 (Ⅰ)若f"(x)>0(x∈(a,b)),有 f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2), 特别有 (Ⅱ)若f"(
设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,t∈(0,1),则 (Ⅰ)若f"(x)>0(x∈(a,b)),有 f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2), 特别有 (Ⅱ)若f"(
admin
2021-11-09
24
问题
设f(x)在(a,b)二阶可导,
x
1
,x
2
∈(a,b),x
1
≠x
2
,
t∈(0,1),则
(Ⅰ)若f"(x)>0(
x∈(a,b)),有
f[tx
1
+(1-t)x
2
]<tf(x
1
)+(1-t)f(x
2
),
特别有
(Ⅱ)若f"(x)<0(
x∈(a,b)),有
f[tx
1
+(1-t)x
2
]>tf(x
1
)+(1-t)f(x
2
),
特别有
选项
答案
(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).因f"(x)>0(x∈(a,b)) => f(x)在(a,b)为凹的.注意tx
1
+(1-t)x
2
∈(a,b) => f(x
1
)>f[tx
1
+(1-t)x
2
]+f’[tx
1
+(1-t)x
2
][x
1
-(tx
1
+(1-t)x
2
)] =f[tx
1
+(1-t)x
2
]+f’[tx
1
+(1-t)x
2
](1-t)(x
1
-x
2
), f(x
2
)>f[tx
1
+(1-t)x
2
]+f’[tx
1
+(1-t)x
2
][x
2
-(tx
1
+(1-t)x
2
)] =f[tx
1
+(1-t)x
2
]-f’[tx
1
+(1-t)x
2
]t(x
1
-x
2
), 两式分别乘t与(1-t)后相加得 tf(x
1
)+(1-t)f(x
2
)>f[tx
1
+(1-t)x
2
].
解析
转载请注明原文地址:https://kaotiyun.com/show/D5y4777K
0
考研数学二
相关试题推荐
设f(χ),g(χ)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(χ)dχ=g(ξ)∫aξf(χ)dχ.
(1)设y=y(χ,t),其中t是由G(χ,y,t)=0确定的χ,y的函数,且f(χ,t),G(χ,y,t)一阶连续可偏导,求.(2)设z=z(χ,y)由方程z+lnz-∫yχdt=1确定,求.
设a1=4,an+1=,证明:an存在,并求此极限.
设A是n阶正定矩阵,证明:|E+A|>1.
求z=f(χ,y)满足:dz=2χdχ-4ydy且f(0,0)=5.(1)求f(χ,y);(2)求f(χ,y)在区域D={(χ,y)|χ2+4y2≤4}上的最小值和最大值.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
已知,且f(0)=g(0)=0,试求
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设f(x)连续,且∫0xtf(x+t)dt=lnx+1,已知f(2)=1/2,求积分12f(x)dx的值。
设0﹤x≤2时,f(x)=(2x)x;﹣2﹤x≤0时,f(x)=f(x+2)-3k。已知极限存在,求k的值。
随机试题
氧气、乙炔严禁混合运输、保管、使用,瓶与瓶之间的距离不小于5m,与明火的距离不小于10m。()
下列职责中,()岗位是不相容职责。
知识产权是专利权、商标权、著作权等( )专有权的统称。
我国公民李某为某市重点高中的数学老师,2010年度取得的收入明细情况如下所示:(1)每月取得工资收入6000元。(2)5月,转让专利权取得收入25000元,缴税前从中依次拿出5000元、3000元,通过国家机关捐赠给农村义务教育。(3)9月,获得稿酬
甲公司为增值税一般纳税人,适用的增值税税率为17%,2014年度至2016年度发生的有关业务资料如下:(1)2014年1月1日,甲公司为自行建造一栋仓库从银行取得借款500万元,期限为3年,合同利率为6%(合同利率与实际利率一致),不计复利,到期一次还本
理性认识的基本形式是()。
现在中央对安全生产很重视,但有的地方总会出现小煤窑倒塌、爆炸等安全事故,你认为主要原因是什么?
AgingposesaseriouschallengetoOECD(OrganizationofEconomicCo-operationandDevelopment)countries,inparticular,howto
A、 B、 C、 D、 D
AnnBest:Yourspecialreportonnewmedicinesshowedthereisthrillingpromiseinfuture"cures"forsomanydiseasesthat
最新回复
(
0
)