首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,t∈(0,1),则 (Ⅰ)若f"(x)>0(x∈(a,b)),有 f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2), 特别有 (Ⅱ)若f"(
设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,t∈(0,1),则 (Ⅰ)若f"(x)>0(x∈(a,b)),有 f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2), 特别有 (Ⅱ)若f"(
admin
2021-11-09
30
问题
设f(x)在(a,b)二阶可导,
x
1
,x
2
∈(a,b),x
1
≠x
2
,
t∈(0,1),则
(Ⅰ)若f"(x)>0(
x∈(a,b)),有
f[tx
1
+(1-t)x
2
]<tf(x
1
)+(1-t)f(x
2
),
特别有
(Ⅱ)若f"(x)<0(
x∈(a,b)),有
f[tx
1
+(1-t)x
2
]>tf(x
1
)+(1-t)f(x
2
),
特别有
选项
答案
(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).因f"(x)>0(x∈(a,b)) => f(x)在(a,b)为凹的.注意tx
1
+(1-t)x
2
∈(a,b) => f(x
1
)>f[tx
1
+(1-t)x
2
]+f’[tx
1
+(1-t)x
2
][x
1
-(tx
1
+(1-t)x
2
)] =f[tx
1
+(1-t)x
2
]+f’[tx
1
+(1-t)x
2
](1-t)(x
1
-x
2
), f(x
2
)>f[tx
1
+(1-t)x
2
]+f’[tx
1
+(1-t)x
2
][x
2
-(tx
1
+(1-t)x
2
)] =f[tx
1
+(1-t)x
2
]-f’[tx
1
+(1-t)x
2
]t(x
1
-x
2
), 两式分别乘t与(1-t)后相加得 tf(x
1
)+(1-t)f(x
2
)>f[tx
1
+(1-t)x
2
].
解析
转载请注明原文地址:https://kaotiyun.com/show/D5y4777K
0
考研数学二
相关试题推荐
设f(χ)二阶连续可导,且f(0)=1,f(2)=3,f′(2)=5,则∫01χf〞(2χ)dχ=_______.
设f(χ)在[0,1]上连续,且f(χ)=+∫01χf(χ)dχ,则f(χ)=_______.
设y=y(χ),z=z(χ)是由方程z=χf(χ+y)和F(χ,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
设y=eχ为微分方程χy′+P(χ)y=χ的解,求此微分方程满足初始条件y(ln2)=0的特解.
求微分方程y2dχ+(2χy+y2)dy=0的通解.
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设z=yf(χ2-y2),其中f可导,证明:
就k的不同取值情况,确定方程x3-3x+k=0的根的个数。
随机试题
生物体结构和功能的基本单位是()。
细层呈波浪状并平行于层面的层理,称为()。
A.辛B.甘C.苦D.酸涩E.咸气虚津亏者慎用
根据反不正当竞争法律制度的规定,下列情形中,属于侵犯商业秘密行为的有()。(2011年)
XX省财政厅文件XX省财发(2015)第7号关于授予王波等同志全省先进会计工作者荣誉称号的公告各市(地)、县(市)财政局,中省直有关单位:为激励广大会计工作者勤奋敬业、开
中华人民共和国主席有权行使的职权包括()。
夏日未至,蚊虫先行。据报道,一种新型的灭蚊方式开始逐渐进入人们的视野,即用二氧化碳作为“诱饵”来消灭蚊子。以下哪项如果为真,则可以推出二氧化碳能够作为“诱饵”?()
中断响应过程中,保护程序计数器PC的作用是()。
在数据库系统中起核心作用的是()。
Readthearticlebelowaboutacity.Aresentences16-22givenbelow"Right"or"Wrong"?Ifthereisnotenoughinformationto
最新回复
(
0
)