首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
admin
2019-08-12
38
问题
设n阶矩阵
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
(1)1°当b≠0时, |λE-A|=[*]=[λ-1-(n-1)b][λ-(1-b)]
n-1
故A的特征值为λ
1
=1+(n-1)b,λ
2
=…=λ
n
=1-b. 对于λ
1
=1+(n-1)b,设对应的一个特征向量为ξ
1
,则 [*] 解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1-b,解齐次线性方程组[(1-b)E-A]χ=0,由 [*] 解得基础解系为ξ
2
=(1,-1,0,…,0)
T
,ξ
3
=(1,0,-1,…,0)
T
,…,ξ
n
=(1,0,0,…,-1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2°当b=0时,A=E.A的特征值为λ
1
=λ
2
…=λ
n
=1,任意n维非零列向量均是特征向量. (2)1°当b≠0时,A有,n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
… ξ
n
],则有 p
-1
AP=diag(1+(n-1)b,1-b,…,1-b). 2°当b=0时,A=E,对任意n阶可逆矩阵P,均有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/DON4777K
0
考研数学二
相关试题推荐
(1)A,B为n阶方阵,证明(2)计算
设A是n阶矩阵,且|A|=5,则|(2A)*|=____________.
已知α1,α2,α3,α4为3维非零列向量,则下列结论中:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式成立.
设zf(2x—y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续二阶偏导数,求
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角矩阵,说明理由.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A为实矩阵,证明ATA的特征值都是非负实数.
已知问λ取何值时,β可由α1,α2,α3线性表出,且表达式唯一;
随机试题
用分流进料方式蒸发时,得到的各份溶液浓度相同。 ()
跖疣的皮损特点为:
关于住房公积金贷款的说法,正确的是()。
下列合同中,属于《合同法》调整范围的有()。
识记是人们获得个体经验的过程,或者说是对信息进行__________的过程。
基础教育工作者必须具备怎样的教育观念?
科举考试中偏重测试考生综合运用知识、分析和解决问题能力的考试方式是()。
向文本框中输入字符时,下面能够被触发的事件是
用Outlook编辑电子邮件。收信地址:mail4test@13.com主题:路由原理将Testle.txt作为附件粘贴到信件中。信件正文如下:您好!附件是路由原理介绍,请查阅,收到请回信。此
MyViewpointonWidespreadSMS1.现在越来越多的年轻人把手机短信作为交流的主要渠道2.使用手机短信的利与弊3.我的观点
最新回复
(
0
)