首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
admin
2019-08-12
47
问题
设n阶矩阵
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
(1)1°当b≠0时, |λE-A|=[*]=[λ-1-(n-1)b][λ-(1-b)]
n-1
故A的特征值为λ
1
=1+(n-1)b,λ
2
=…=λ
n
=1-b. 对于λ
1
=1+(n-1)b,设对应的一个特征向量为ξ
1
,则 [*] 解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1-b,解齐次线性方程组[(1-b)E-A]χ=0,由 [*] 解得基础解系为ξ
2
=(1,-1,0,…,0)
T
,ξ
3
=(1,0,-1,…,0)
T
,…,ξ
n
=(1,0,0,…,-1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2°当b=0时,A=E.A的特征值为λ
1
=λ
2
…=λ
n
=1,任意n维非零列向量均是特征向量. (2)1°当b≠0时,A有,n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
… ξ
n
],则有 p
-1
AP=diag(1+(n-1)b,1-b,…,1-b). 2°当b=0时,A=E,对任意n阶可逆矩阵P,均有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/DON4777K
0
考研数学二
相关试题推荐
设3阶方阵A,B满足关系式A-1BA=6A+BA,且则B=________________.
设常数0<a<1,求
设函数z=z(x,y)由方程x2一6xy+10y2一2yz—z2+32=0确定,讨论函数z(x,y)的极大值与极小值.
假设λ为n阶可逆矩阵A的一个特征值,证明:为A的伴随矩阵A*的特征值.
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+0(χ3).
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anξ1;
设A=E+ααT,其中α=(α1,α2,α3)T,且αTα=2,求A的特征值和特征向量.
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为______。
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
随机试题
标准的汉字机内码在计算机中的表示方法的描述是______。
实验组间互为对照是实验和对照在同一受试对象身上进行的对照是
属纯粘液腺的小涎腺是
某患者因锐器伤致右肘平而尺神经损伤,予以手术修复,术后3个月于臂中段沿尺神经走行叩击时出现右环指、小指处放射痛,说明神经再生已达
1.某办公楼卫生间给排水系统工程设计,见图3-T-2。给水管道系统及卫生器具有关分部分项工程量清单项目的统一编码,见表3-T-4。2.某单位参与投标一碳钢设备制作安装项目,该设备净重1000kg,其中:设备筒体部分净重为750kg,封头、法兰等净重为2
下列关于自动喷水灭火系统说法错误的是()。
单家商业银行同业融入资金余额不得超过该银行负债总额的()。
全面推进集体林权制度改革要在坚持集体林地所有权不变的前提下,将()落实到户。
TheestablishmentoftheThirdReichinfluencedeventsinAmericanhistorybystartingachainofeventswhichculminatedinwar
王码五笔字型输入法属于
最新回复
(
0
)